TU Darmstadt / ULB / TUbiblio

BigMEC: Scalable Service Migration for Mobile Edge Computing

Brandherm, Florian ; Gedeon, Julien ; Abboud, Osama ; Mühlhäuser, Max (2022)
BigMEC: Scalable Service Migration for Mobile Edge Computing.
7th ACM/IEEE Symposium on Edge Computing. Seattle, USA (05.12.2022-08.12.2022)
doi: 10.1109/SEC54971.2022.00018
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The proximity of Mobile Edge Computing offers the potential for offloading low latency closed-loop applications from mobile devices. However, to repair decreases in quality of service (QoS), e.g., resulting from user mobility, the placement of service instances must be continually updated – essential for mission critical applications that cannot tolerate decreased QoS, for example virtual reality or networked control systems. This paper presents BigMEC, a decentralized service placement algorithm that achieves scalable, fast, and high-quality placements by making local service migration decisions immediately when a drop in QoS is detected. The algorithm relies on reinforcement learning to adapt to unknown scenarios and to approximate long-term optimal placement updates by taking future transition costs into account. BigMEC limits each decentralized migration decision to nearby edge sites. Thus, decision computation times are independent of the number of nodes in the network and well below 10ms in our experimental setup. Our ablation study validates that, using its scalable approach to decentralized resource conflict resolution, BigMEC quickly approaches optimal placement with increasing local view size, and that it can reliably learn to approximate long-term optimal migration decisions, given only a black-box optimization objective.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Brandherm, Florian ; Gedeon, Julien ; Abboud, Osama ; Mühlhäuser, Max
Art des Eintrags: Bibliographie
Titel: BigMEC: Scalable Service Migration for Mobile Edge Computing
Sprache: Englisch
Publikationsjahr: 6 Dezember 2022
Verlag: IEEE
Buchtitel: The Seventh ACM/IEEE Symposium on Edge Computing
Veranstaltungstitel: 7th ACM/IEEE Symposium on Edge Computing
Veranstaltungsort: Seattle, USA
Veranstaltungsdatum: 05.12.2022-08.12.2022
DOI: 10.1109/SEC54971.2022.00018
Zugehörige Links:
Kurzbeschreibung (Abstract):

The proximity of Mobile Edge Computing offers the potential for offloading low latency closed-loop applications from mobile devices. However, to repair decreases in quality of service (QoS), e.g., resulting from user mobility, the placement of service instances must be continually updated – essential for mission critical applications that cannot tolerate decreased QoS, for example virtual reality or networked control systems. This paper presents BigMEC, a decentralized service placement algorithm that achieves scalable, fast, and high-quality placements by making local service migration decisions immediately when a drop in QoS is detected. The algorithm relies on reinforcement learning to adapt to unknown scenarios and to approximate long-term optimal placement updates by taking future transition costs into account. BigMEC limits each decentralized migration decision to nearby edge sites. Thus, decision computation times are independent of the number of nodes in the network and well below 10ms in our experimental setup. Our ablation study validates that, using its scalable approach to decentralized resource conflict resolution, BigMEC quickly approaches optimal placement with increasing local view size, and that it can reliably learn to approximate long-term optimal migration decisions, given only a black-box optimization objective.

Freie Schlagworte: mobile edge computing, service migration, reinforcement learning, distributed algorithms
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik > Teilprojekt A1: Modellierung
TU-Projekte: DFG|SFB1053|SFB1053 TPA01 Mühlhä
Hinterlegungsdatum: 05 Dez 2022 09:00
Letzte Änderung: 15 Mär 2024 07:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen