Brandherm, Florian ; Gedeon, Julien ; Abboud, Osama ; Mühlhäuser, Max (2022)
BigMEC: Scalable Service Migration for Mobile Edge Computing.
7th ACM/IEEE Symposium on Edge Computing. Seattle, USA (05.12.2022-08.12.2022)
doi: 10.1109/SEC54971.2022.00018
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
The proximity of Mobile Edge Computing offers the potential for offloading low latency closed-loop applications from mobile devices. However, to repair decreases in quality of service (QoS), e.g., resulting from user mobility, the placement of service instances must be continually updated – essential for mission critical applications that cannot tolerate decreased QoS, for example virtual reality or networked control systems. This paper presents BigMEC, a decentralized service placement algorithm that achieves scalable, fast, and high-quality placements by making local service migration decisions immediately when a drop in QoS is detected. The algorithm relies on reinforcement learning to adapt to unknown scenarios and to approximate long-term optimal placement updates by taking future transition costs into account. BigMEC limits each decentralized migration decision to nearby edge sites. Thus, decision computation times are independent of the number of nodes in the network and well below 10ms in our experimental setup. Our ablation study validates that, using its scalable approach to decentralized resource conflict resolution, BigMEC quickly approaches optimal placement with increasing local view size, and that it can reliably learn to approximate long-term optimal migration decisions, given only a black-box optimization objective.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Brandherm, Florian ; Gedeon, Julien ; Abboud, Osama ; Mühlhäuser, Max |
Art des Eintrags: | Bibliographie |
Titel: | BigMEC: Scalable Service Migration for Mobile Edge Computing |
Sprache: | Englisch |
Publikationsjahr: | 6 Dezember 2022 |
Verlag: | IEEE |
Buchtitel: | The Seventh ACM/IEEE Symposium on Edge Computing |
Veranstaltungstitel: | 7th ACM/IEEE Symposium on Edge Computing |
Veranstaltungsort: | Seattle, USA |
Veranstaltungsdatum: | 05.12.2022-08.12.2022 |
DOI: | 10.1109/SEC54971.2022.00018 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | The proximity of Mobile Edge Computing offers the potential for offloading low latency closed-loop applications from mobile devices. However, to repair decreases in quality of service (QoS), e.g., resulting from user mobility, the placement of service instances must be continually updated – essential for mission critical applications that cannot tolerate decreased QoS, for example virtual reality or networked control systems. This paper presents BigMEC, a decentralized service placement algorithm that achieves scalable, fast, and high-quality placements by making local service migration decisions immediately when a drop in QoS is detected. The algorithm relies on reinforcement learning to adapt to unknown scenarios and to approximate long-term optimal placement updates by taking future transition costs into account. BigMEC limits each decentralized migration decision to nearby edge sites. Thus, decision computation times are independent of the number of nodes in the network and well below 10ms in our experimental setup. Our ablation study validates that, using its scalable approach to decentralized resource conflict resolution, BigMEC quickly approaches optimal placement with increasing local view size, and that it can reliably learn to approximate long-term optimal migration decisions, given only a black-box optimization objective. |
Freie Schlagworte: | mobile edge computing, service migration, reinforcement learning, distributed algorithms |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Telekooperation DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik > Teilprojekt A1: Modellierung |
TU-Projekte: | DFG|SFB1053|SFB1053 TPA01 Mühlhä |
Hinterlegungsdatum: | 05 Dez 2022 09:00 |
Letzte Änderung: | 15 Mär 2024 07:42 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |