Kreß, Antonio (2022)
Methodik zur Konfiguration von Lernfabriken für die schlanke Produktion.
Technische Universität Darmstadt
doi: 10.2370/9783844088045
Dissertation, Bibliographie
Dies ist die neueste Version dieses Eintrags.
Kurzbeschreibung (Abstract)
Lernfabriken stellen ein geeignetes Instrument zur Weiterbildung, Forschung und Lehre in Unternehmen und Forschungsinstituten zu Inhalten rund um die industrielle Produktion dar. Bisherige Gestaltungsansätze für Lernfabriken fokussieren dabei nicht deren Konfiguration, d. h. die Auswahl von Fabrikelementen findet intuitiv statt.
Im Rahmen dieser Dissertation wird ein Optimierungsmodell zur Konfiguration von Lernfabriken hergeleitet. Aus der exakten Lösung bestimmt sich die bestmögliche Konfiguration hinsichtlich der definierten Zielfunktion. Die Entscheidungsvariablen kennzeichnen, welche Fabrikelemente ausgewählt werden. Aus den summierten Nutzwerten aller ausgewählten Fabrikelemente bestimmt sich die Zielfunktion. Restriktionen zur Konfiguration einer Lernfabrik stellen vor allem das vorhandene Budget sowie die Abmessungen der Lernfabrik dar. Für das hergeleitete Optimierungsmodell, dem Facility Configuration Problem, ist in dieser Dissertation ein exakter Algorithmus entwickelt worden, welcher auf einem Branch-and-Bound-Ansatz basiert.
Das in der vorliegenden Dissertation entwickelte Vorgehen zur Konfiguration von Lernfabriken ist in vier Vorgehensschritte eingeteilt. Zur Konfiguration von Lernfabriken sind zunächst die zugrundeliegenden Anforderungen zu klären. Diese gehen vor allem aus den zuvor ermittelten Lern- und Forschungszielen sowie den Rahmenbedingungen der Organisation hervor, die eine Lernfabrik betreiben möchte. Im Anschluss werden mögliche Konfigurationsalternativen gebildet, die aus Fabrikelementen bestehen. Die Auswahl des Produkts bzw. der Dienstleistung der Lernfabrik bestimmt den abgebildeten Wertstrom der Lernfabrik und somit die Fabrikbereiche. Zu jedem Fabrikbereich sind mögliche Konfigurationsalternativen zu gestalten, die aus einem oder mehreren Fabrikelementen bestehen. Diese Vorauswahl an Konfigurationsalternativen wird anschließend auf Basis von gewichteten Bewertungskriterien bewertet. Durch die Anwendung der exakten Algorithmen kann abschließend die hinsichtlich der definierten Zielfunktion bestmögliche Konfiguration einer Lernfabrik ermittelt und analysiert werden. Als geeignete Unterstützung wurde dazu im Rahmen dieser Dissertation ein softwaregestütztes Konfigurationssystem konzipiert und umgesetzt, das sich am gezeigten Vorgehen orientiert und in dem die exakten Algorithmen implementiert sind.
Die in dieser Dissertation entwickelte Methodik wurde in drei Fallstudien angewendet, welche verschiedene Planungsfälle für Lernfabriken in Unternehmen und Forschungseinrichtungen darstellen. Zur Evaluation wurde ein Vergleichsexperiment durchgeführt, bei dem die Ergebnisse der entwickelten Methodik mit dem intuitiven Ansatz zur Auswahl von Fabrikelementen verglichen wurden. Die ermittelten Konfigurationen weisen im Vergleich zur intuitiven Auswahl signifikant höhere Nutzwerte auf. Durch die entwickelte Methodik können personenunabhängig bei jeder Durchführung die bestmöglichen Konfigurationen ermittelt und analysiert werden. In einer Expertenbefragung konnte zusätzlich gezeigt werden, dass die Methodik dieser Dissertation hinsichtlich der gestellten Anforderungen besser eingeschätzt wird als bisherige Ansätze.
Typ des Eintrags: | Dissertation |
---|---|
Erschienen: | 2022 |
Autor(en): | Kreß, Antonio |
Art des Eintrags: | Bibliographie |
Titel: | Methodik zur Konfiguration von Lernfabriken für die schlanke Produktion |
Sprache: | Deutsch |
Referenten: | Metternich, Prof. Dr. Joachim ; Ramsauer, Prof. Dr. Christian |
Publikationsjahr: | 2022 |
Ort: | Düren |
Verlag: | Shaker Verlag |
Reihe: | Schriftenreihe des PTW: "Innovation Fertigungstechnik" |
Kollation: | XVI, 186 Seiten |
Datum der mündlichen Prüfung: | 2 August 2022 |
DOI: | 10.2370/9783844088045 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | Lernfabriken stellen ein geeignetes Instrument zur Weiterbildung, Forschung und Lehre in Unternehmen und Forschungsinstituten zu Inhalten rund um die industrielle Produktion dar. Bisherige Gestaltungsansätze für Lernfabriken fokussieren dabei nicht deren Konfiguration, d. h. die Auswahl von Fabrikelementen findet intuitiv statt. Im Rahmen dieser Dissertation wird ein Optimierungsmodell zur Konfiguration von Lernfabriken hergeleitet. Aus der exakten Lösung bestimmt sich die bestmögliche Konfiguration hinsichtlich der definierten Zielfunktion. Die Entscheidungsvariablen kennzeichnen, welche Fabrikelemente ausgewählt werden. Aus den summierten Nutzwerten aller ausgewählten Fabrikelemente bestimmt sich die Zielfunktion. Restriktionen zur Konfiguration einer Lernfabrik stellen vor allem das vorhandene Budget sowie die Abmessungen der Lernfabrik dar. Für das hergeleitete Optimierungsmodell, dem Facility Configuration Problem, ist in dieser Dissertation ein exakter Algorithmus entwickelt worden, welcher auf einem Branch-and-Bound-Ansatz basiert. Das in der vorliegenden Dissertation entwickelte Vorgehen zur Konfiguration von Lernfabriken ist in vier Vorgehensschritte eingeteilt. Zur Konfiguration von Lernfabriken sind zunächst die zugrundeliegenden Anforderungen zu klären. Diese gehen vor allem aus den zuvor ermittelten Lern- und Forschungszielen sowie den Rahmenbedingungen der Organisation hervor, die eine Lernfabrik betreiben möchte. Im Anschluss werden mögliche Konfigurationsalternativen gebildet, die aus Fabrikelementen bestehen. Die Auswahl des Produkts bzw. der Dienstleistung der Lernfabrik bestimmt den abgebildeten Wertstrom der Lernfabrik und somit die Fabrikbereiche. Zu jedem Fabrikbereich sind mögliche Konfigurationsalternativen zu gestalten, die aus einem oder mehreren Fabrikelementen bestehen. Diese Vorauswahl an Konfigurationsalternativen wird anschließend auf Basis von gewichteten Bewertungskriterien bewertet. Durch die Anwendung der exakten Algorithmen kann abschließend die hinsichtlich der definierten Zielfunktion bestmögliche Konfiguration einer Lernfabrik ermittelt und analysiert werden. Als geeignete Unterstützung wurde dazu im Rahmen dieser Dissertation ein softwaregestütztes Konfigurationssystem konzipiert und umgesetzt, das sich am gezeigten Vorgehen orientiert und in dem die exakten Algorithmen implementiert sind. Die in dieser Dissertation entwickelte Methodik wurde in drei Fallstudien angewendet, welche verschiedene Planungsfälle für Lernfabriken in Unternehmen und Forschungseinrichtungen darstellen. Zur Evaluation wurde ein Vergleichsexperiment durchgeführt, bei dem die Ergebnisse der entwickelten Methodik mit dem intuitiven Ansatz zur Auswahl von Fabrikelementen verglichen wurden. Die ermittelten Konfigurationen weisen im Vergleich zur intuitiven Auswahl signifikant höhere Nutzwerte auf. Durch die entwickelte Methodik können personenunabhängig bei jeder Durchführung die bestmöglichen Konfigurationen ermittelt und analysiert werden. In einer Expertenbefragung konnte zusätzlich gezeigt werden, dass die Methodik dieser Dissertation hinsichtlich der gestellten Anforderungen besser eingeschätzt wird als bisherige Ansätze. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) 16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > CiP Center für industrielle Produktivität |
Hinterlegungsdatum: | 18 Nov 2022 09:55 |
Letzte Änderung: | 31 Jul 2024 10:22 |
PPN: | 501766642 |
Referenten: | Metternich, Prof. Dr. Joachim ; Ramsauer, Prof. Dr. Christian |
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 2 August 2022 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
-
Methodik zur Konfiguration von Lernfabriken für die schlanke Produktion. (deposited 25 Jul 2023 14:12)
- Methodik zur Konfiguration von Lernfabriken für die schlanke Produktion. (deposited 18 Nov 2022 09:55) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |