TU Darmstadt / ULB / TUbiblio

Secure Maximum Weight Matching Approximation on General Graphs

Brüggemann, Andreas ; Breuer, Malte ; Klinger, Andreas ; Schneider, Thomas ; Meyer, Ulrike (2022)
Secure Maximum Weight Matching Approximation on General Graphs.
CCS '22: 2022 ACM SIGSAC Conference on Computer and Communications Security. Los Angeles, USA (07.11.2022-07.11.2022)
doi: 10.1145/3559613.3563209
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Brüggemann, Andreas ; Breuer, Malte ; Klinger, Andreas ; Schneider, Thomas ; Meyer, Ulrike
Art des Eintrags: Bibliographie
Titel: Secure Maximum Weight Matching Approximation on General Graphs
Sprache: Englisch
Publikationsjahr: 7 November 2022
Ort: New York, NY
Verlag: ACM
Buchtitel: WPES'22: Proceedings of the 21st Workshop on Privacy in the Electronic Society
Veranstaltungstitel: CCS '22: 2022 ACM SIGSAC Conference on Computer and Communications Security
Veranstaltungsort: Los Angeles, USA
Veranstaltungsdatum: 07.11.2022-07.11.2022
DOI: 10.1145/3559613.3563209
Kurzbeschreibung (Abstract):

Privacy-preserving protocols for matchings on general graphs can be used for applications such as online dating, bartering, or kidney donor exchange. In addition, they can act as a building block for more complex protocols. While privacy-preserving protocols for matchings on bipartite graphs are a well-researched topic, the case of general graphs has experienced significantly less attention so far. We address this gap by providing the first privacy-preserving protocol for maximum weight matching on general graphs. To maximize the scalability of our approach, we compute an 1/2-approximation instead of an exact solution. For N nodes, our protocol requires O(N log N) rounds, O(N^3) communication, and runs in only 12.5 minutes for N=400.

Zusätzliche Informationen:

21st Workshop on Privacy in the Electronic Society

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Praktische Kryptographie und Privatheit
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Graduiertenkollegs
DFG-Graduiertenkollegs > Graduiertenkolleg 2050 Privacy and Trust for Mobile Users
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1119: CROSSING – Kryptographiebasierte Sicherheitslösungen als Grundlage für Vertrauen in heutigen und zukünftigen IT-Systemen
Hinterlegungsdatum: 15 Nov 2022 14:20
Letzte Änderung: 30 Jul 2024 10:17
PPN: 504045555
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen