Ardah, Khaled ; Haardt, Martin ; Liu, Tianyi ; Matter, Frederic ; Pesavento, Marius ; Pfetsch, Marc E.
Hrsg.: Kutyniok, Gitta ; Rauhut, Holger ; Kunsch, Robert J. (2022)
Recovery Under Side Constraints.
In: Compressed Sensing in Information Processing, Auflage: 1. Auflage
doi: 10.1007/978-3-031-09745-4_7
Buchkapitel, Bibliographie
Kurzbeschreibung (Abstract)
This chapter addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representation vector, and the nonlinear measurement structure. First, we demonstrate how a priori information in the form of structural side constraints influence recovery guarantees (null space properties) using ℓ1-minimization. Furthermore, for constant modulus signals, signals with row, block, and rank sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. To this end, we derive a new linear mixing matrix design based on coherence minimization. Then, we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase-retrieval problem with and without dictionary learning.
Typ des Eintrags: | Buchkapitel |
---|---|
Erschienen: | 2022 |
Herausgeber: | Kutyniok, Gitta ; Rauhut, Holger ; Kunsch, Robert J. |
Autor(en): | Ardah, Khaled ; Haardt, Martin ; Liu, Tianyi ; Matter, Frederic ; Pesavento, Marius ; Pfetsch, Marc E. |
Art des Eintrags: | Bibliographie |
Titel: | Recovery Under Side Constraints |
Sprache: | Englisch |
Publikationsjahr: | 22 Oktober 2022 |
Verlag: | Birkhäuser |
Buchtitel: | Compressed Sensing in Information Processing |
Reihe: | Applied and Numerical Harmonic Analysis |
Auflage: | 1. Auflage |
DOI: | 10.1007/978-3-031-09745-4_7 |
Kurzbeschreibung (Abstract): | This chapter addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representation vector, and the nonlinear measurement structure. First, we demonstrate how a priori information in the form of structural side constraints influence recovery guarantees (null space properties) using ℓ1-minimization. Furthermore, for constant modulus signals, signals with row, block, and rank sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. To this end, we derive a new linear mixing matrix design based on coherence minimization. Then, we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase-retrieval problem with and without dictionary learning. |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Optimierung 04 Fachbereich Mathematik > Optimierung > Discrete Optimization |
Hinterlegungsdatum: | 31 Jan 2023 08:51 |
Letzte Änderung: | 13 Mär 2023 10:30 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |