TU Darmstadt / ULB / TUbiblio

Recovery Under Side Constraints

Ardah, Khaled ; Haardt, Martin ; Liu, Tianyi ; Matter, Frederic ; Pesavento, Marius ; Pfetsch, Marc E.
Hrsg.: Kutyniok, Gitta ; Rauhut, Holger ; Kunsch, Robert J. (2022)
Recovery Under Side Constraints.
In: Compressed Sensing in Information Processing, Auflage: 1. Auflage
doi: 10.1007/978-3-031-09745-4_7
Buchkapitel, Bibliographie

Kurzbeschreibung (Abstract)

This chapter addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representation vector, and the nonlinear measurement structure. First, we demonstrate how a priori information in the form of structural side constraints influence recovery guarantees (null space properties) using ℓ1-minimization. Furthermore, for constant modulus signals, signals with row, block, and rank sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. To this end, we derive a new linear mixing matrix design based on coherence minimization. Then, we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase-retrieval problem with and without dictionary learning.

Typ des Eintrags: Buchkapitel
Erschienen: 2022
Herausgeber: Kutyniok, Gitta ; Rauhut, Holger ; Kunsch, Robert J.
Autor(en): Ardah, Khaled ; Haardt, Martin ; Liu, Tianyi ; Matter, Frederic ; Pesavento, Marius ; Pfetsch, Marc E.
Art des Eintrags: Bibliographie
Titel: Recovery Under Side Constraints
Sprache: Englisch
Publikationsjahr: 22 Oktober 2022
Verlag: Birkhäuser
Buchtitel: Compressed Sensing in Information Processing
Reihe: Applied and Numerical Harmonic Analysis
Auflage: 1. Auflage
DOI: 10.1007/978-3-031-09745-4_7
Kurzbeschreibung (Abstract):

This chapter addresses sparse signal reconstruction under various types of structural side constraints with applications in multi-antenna systems. Side constraints may result from prior information on the measurement system and the sparse signal structure. They may involve the structure of the sensing matrix, the structure of the non-zero support values, the temporal structure of the sparse representation vector, and the nonlinear measurement structure. First, we demonstrate how a priori information in the form of structural side constraints influence recovery guarantees (null space properties) using ℓ1-minimization. Furthermore, for constant modulus signals, signals with row, block, and rank sparsity, as well as non-circular signals, we illustrate how structural prior information can be used to devise efficient algorithms with improved recovery performance and reduced computational complexity. Finally, we address the measurement system design for linear and nonlinear measurements of sparse signals. To this end, we derive a new linear mixing matrix design based on coherence minimization. Then, we extend our focus to nonlinear measurement systems where we design parallel optimization algorithms to efficiently compute stationary points in the sparse phase-retrieval problem with and without dictionary learning.

Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Nachrichtentechnische Systeme
04 Fachbereich Mathematik
04 Fachbereich Mathematik > Optimierung
04 Fachbereich Mathematik > Optimierung > Discrete Optimization
Hinterlegungsdatum: 31 Jan 2023 08:51
Letzte Änderung: 13 Mär 2023 10:30
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen