TU Darmstadt / ULB / TUbiblio

Anisotropic dislocation-domain wall interactions in ferroelectrics

Zhuo, Fangping ; Zhou, Xiandong ; Gao, Shuang ; Höfling, Marion ; Dietrich, Felix ; Groszewicz, Pedro B. ; Fulanovic, Lovro ; Breckner, Patrick ; Wohninsland, Andreas ; Xu, Bai-Xiang ; Kleebe, Hans-Joachim ; Tan, Xiaoli ; Koruza, Jurij ; Damjanovic, Dragan ; Rödel, Jürgen (2022)
Anisotropic dislocation-domain wall interactions in ferroelectrics.
In: Nature communications, 13
doi: 10.1038/s41467-022-34304-7
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Dislocations are usually expected to degrade electrical, thermal and optical functionality and to tune mechanical properties of materials. Here, we demonstrate a general framework for the control of dislocation–domain wall interactions in ferroics, employing an imprinted dislocation network. Anisotropic dielectric and electromechanical properties are engineered in barium titanate crystals via well-controlled line-plane relationships, culminating in extraordinary and stable large-signal dielectric permittivity (≈23100) and piezoelectric coefficient (≈2470 pm V–1). In contrast, a related increase in properties utilizing point-plane relation prompts a dramatic cyclic degradation. Observed dielectric and piezoelectric properties are rationalized using transmission electron microscopy and time- and cycle-dependent nuclear magnetic resonance paired with X-ray diffraction. Succinct mechanistic understanding is provided by phase-field simulations and driving force calculations of the described dislocation–domain wall interactions. Our 1D-2D defect approach offers a fertile ground for tailoring functionality in a wide range of functional material systems.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Zhuo, Fangping ; Zhou, Xiandong ; Gao, Shuang ; Höfling, Marion ; Dietrich, Felix ; Groszewicz, Pedro B. ; Fulanovic, Lovro ; Breckner, Patrick ; Wohninsland, Andreas ; Xu, Bai-Xiang ; Kleebe, Hans-Joachim ; Tan, Xiaoli ; Koruza, Jurij ; Damjanovic, Dragan ; Rödel, Jürgen
Art des Eintrags: Bibliographie
Titel: Anisotropic dislocation-domain wall interactions in ferroelectrics
Sprache: Englisch
Publikationsjahr: 7 November 2022
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nature communications
Jahrgang/Volume einer Zeitschrift: 13
Kollation: 11 Seiten
DOI: 10.1038/s41467-022-34304-7
Kurzbeschreibung (Abstract):

Dislocations are usually expected to degrade electrical, thermal and optical functionality and to tune mechanical properties of materials. Here, we demonstrate a general framework for the control of dislocation–domain wall interactions in ferroics, employing an imprinted dislocation network. Anisotropic dielectric and electromechanical properties are engineered in barium titanate crystals via well-controlled line-plane relationships, culminating in extraordinary and stable large-signal dielectric permittivity (≈23100) and piezoelectric coefficient (≈2470 pm V–1). In contrast, a related increase in properties utilizing point-plane relation prompts a dramatic cyclic degradation. Observed dielectric and piezoelectric properties are rationalized using transmission electron microscopy and time- and cycle-dependent nuclear magnetic resonance paired with X-ray diffraction. Succinct mechanistic understanding is provided by phase-field simulations and driving force calculations of the described dislocation–domain wall interactions. Our 1D-2D defect approach offers a fertile ground for tailoring functionality in a wide range of functional material systems.

Zusätzliche Informationen:

Artikel-ID: 6676

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Nichtmetallisch-Anorganische Werkstoffe
Hinterlegungsdatum: 08 Nov 2022 06:39
Letzte Änderung: 26 Jan 2024 09:21
PPN: 501284214
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen