TU Darmstadt / ULB / TUbiblio

Utility-based performance evaluation of biometric sample quality assessment algorithms

Henniger, Olaf ; Fu, Biying ; Chen, Cong
Hrsg.: Gesellschaft für Informatik e.V. (2022)
Utility-based performance evaluation of biometric sample quality assessment algorithms.
21st International Conference of the Biometrics Special Interest Group. Darmstadt, Germany (14.09.2022-16.09.2022)
doi: 10.1109/BIOSIG55365.2022.9897037
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The quality score of a biometric sample is expected to predict the sample’s utility, but a universally valid definition of utility is missing. A harmonized definition of utility would be useful to facilitate the comparison of biometric sample quality assessment algorithms. This paper generalizes the utility of a biometric sample as normalized difference between the means of non-mated and mated comparison scores with respect to this sample. Using a face image data set, we show that discarding samples with low utility scores determined in this way results in a rapidly declining false non-match rate. The obtained utility scores can be used as ground-truth utility labels for training biometric sample quality assessment algorithms and for summarizing their prediction performance in a single plot and in a single Figure of merit based on the proposed utility score definition.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Henniger, Olaf ; Fu, Biying ; Chen, Cong
Art des Eintrags: Bibliographie
Titel: Utility-based performance evaluation of biometric sample quality assessment algorithms
Sprache: Englisch
Publikationsjahr: 27 September 2022
Verlag: Gesellschaft für Informatik e.V.
Buchtitel: BIOSIG 2022: Proceedings of the 21st International Conference of the Biometrics Special Interest Group
Reihe: Lecture Notes in Informatics
Band einer Reihe: P329
Veranstaltungstitel: 21st International Conference of the Biometrics Special Interest Group
Veranstaltungsort: Darmstadt, Germany
Veranstaltungsdatum: 14.09.2022-16.09.2022
DOI: 10.1109/BIOSIG55365.2022.9897037
Kurzbeschreibung (Abstract):

The quality score of a biometric sample is expected to predict the sample’s utility, but a universally valid definition of utility is missing. A harmonized definition of utility would be useful to facilitate the comparison of biometric sample quality assessment algorithms. This paper generalizes the utility of a biometric sample as normalized difference between the means of non-mated and mated comparison scores with respect to this sample. Using a face image data set, we show that discarding samples with low utility scores determined in this way results in a rapidly declining false non-match rate. The obtained utility scores can be used as ground-truth utility labels for training biometric sample quality assessment algorithms and for summarizing their prediction performance in a single plot and in a single Figure of merit based on the proposed utility score definition.

Freie Schlagworte: Biometrics, Quality estimation, Performance evaluation, Ground truth
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 07 Nov 2022 14:59
Letzte Änderung: 23 Mär 2023 08:09
PPN: 506239152
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen