TU Darmstadt / ULB / TUbiblio

Soot Prediction in a Model Aero-Engine Combustor using a Quadrature-based Method of Moments

Çokuslu, Ömer H. ; Hasse, Christian ; Geigle, Klaus-Peter ; Ferraro, Federica (2022)
Soot Prediction in a Model Aero-Engine Combustor using a Quadrature-based Method of Moments.
Enabling Sustainability Through Aerospace Technology. San Diego, USA and virtual (03.01.2022-07.01.2022)
doi: 10.26083/tuprints-00022571
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Numerical simulations of aero-engine combustors are extremely challenging due to the complex multiscale and multiphysics phenomena involved. Currently, reliable modeling and prediction of soot particle formation produced during incomplete hydrocarbon combustion is one of the major issues in combustion research. The next generation of gas turbines for more sustainable aircraft engines must meet strict limitations for soot particle mass and size distribution. Therefore, a comprehensive understanding of the processes leading to soot particle formation and its precise prediction in practical combustion systems is crucial. In this work, a recently developed detailed soot model, the Split-based Extended Quadrature Method of Moments (S-EQMOM), is applied to simulate a model aero-engine combustor, experimentally investigated by the German Aerospace Center (DLR). In previous studies, the S-EQMOM demonstrated good prediction capability in predicting soot particle oxidation, important to account for the reduction of soot particles. Here, the model is evaluated at elevated pressure conditions. Large eddy simulations are performed using flamelet-based tabulated chemistry with artificially thickened flame (ATF) approach coupled with the S-EQMOM. The simulation results are analyzed for both the gas phase and soot solid phase and compared with the experimental data. Velocity and temperature fields are well predicted. Soot formation is underestimated by the simulation, but qualitatively in good agreement with the experimental data.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Çokuslu, Ömer H. ; Hasse, Christian ; Geigle, Klaus-Peter ; Ferraro, Federica
Art des Eintrags: Zweitveröffentlichung
Titel: Soot Prediction in a Model Aero-Engine Combustor using a Quadrature-based Method of Moments
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: American Institute of Aeronautics and Astronautics, Inc.
Buchtitel: AIAA SCITECH 2022 Forum
Kollation: 12 Seiten
Veranstaltungstitel: Enabling Sustainability Through Aerospace Technology
Veranstaltungsort: San Diego, USA and virtual
Veranstaltungsdatum: 03.01.2022-07.01.2022
DOI: 10.26083/tuprints-00022571
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22571
Zugehörige Links:
Herkunft: Zweitveröffentlichung
Kurzbeschreibung (Abstract):

Numerical simulations of aero-engine combustors are extremely challenging due to the complex multiscale and multiphysics phenomena involved. Currently, reliable modeling and prediction of soot particle formation produced during incomplete hydrocarbon combustion is one of the major issues in combustion research. The next generation of gas turbines for more sustainable aircraft engines must meet strict limitations for soot particle mass and size distribution. Therefore, a comprehensive understanding of the processes leading to soot particle formation and its precise prediction in practical combustion systems is crucial. In this work, a recently developed detailed soot model, the Split-based Extended Quadrature Method of Moments (S-EQMOM), is applied to simulate a model aero-engine combustor, experimentally investigated by the German Aerospace Center (DLR). In previous studies, the S-EQMOM demonstrated good prediction capability in predicting soot particle oxidation, important to account for the reduction of soot particles. Here, the model is evaluated at elevated pressure conditions. Large eddy simulations are performed using flamelet-based tabulated chemistry with artificially thickened flame (ATF) approach coupled with the S-EQMOM. The simulation results are analyzed for both the gas phase and soot solid phase and compared with the experimental data. Velocity and temperature fields are well predicted. Soot formation is underestimated by the simulation, but qualitatively in good agreement with the experimental data.

Freie Schlagworte: Soot formation, Split-based Extended Quadrature Method of Moments, Large Eddy Simulation, model aero-engine combustor
Status: Postprint
URN: urn:nbn:de:tuda-tuprints-225719
Zusätzliche Informationen:

Correction: https://doi.org/10.2514/6.2022-1446.c1

View Video Presentation: https://doi.org/10.2514/6.2022-1446.vid

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Simulation reaktiver Thermo-Fluid Systeme (STFS)
TU-Projekte: EC/H2020|821418|ESTiMatE
Hinterlegungsdatum: 31 Okt 2022 13:38
Letzte Änderung: 01 Nov 2022 08:13
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen