TU Darmstadt / ULB / TUbiblio

Advantages of a Statistical Estimation Approach for Clock Frequency Estimation of Heterogeneous and Irregular CGRAs

Wolf, Dennis Leander ; Spang, Christoph ; Diener, Daniel ; Hochberger, Christian (2022)
Advantages of a Statistical Estimation Approach for Clock Frequency Estimation of Heterogeneous and Irregular CGRAs.
In: ACM Transactions on Reconfigurable Technology and Systems, 16 (1)
doi: 10.1145/3531062
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Estimating the maximum clock frequency of homogeneous Coarse Grained Reconfigurable Arrays/ Architectures (CGRAs) with an arbitrary number of Processing Elements (PE) is difficult. Clock frequency estimation of highly heterogeneous CGRAs takes additional factors into account, thus is even more difficult. Main challenges are the heterogeneous set of operators for each Processing Element (PE) and the irregular interconnect (connecting a CGRA’s PEs). Multiple estimation approaches could be reasonable. We propose an optimized statistical estimator, which is based on our prior work. We demonstrate its superiority to state of the art neural networks in terms of accuracy and robustness, especially in situations with a sparse set of training data.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Wolf, Dennis Leander ; Spang, Christoph ; Diener, Daniel ; Hochberger, Christian
Art des Eintrags: Bibliographie
Titel: Advantages of a Statistical Estimation Approach for Clock Frequency Estimation of Heterogeneous and Irregular CGRAs
Sprache: Englisch
Publikationsjahr: 22 Dezember 2022
Verlag: ACM
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACM Transactions on Reconfigurable Technology and Systems
Jahrgang/Volume einer Zeitschrift: 16
(Heft-)Nummer: 1
DOI: 10.1145/3531062
Kurzbeschreibung (Abstract):

Estimating the maximum clock frequency of homogeneous Coarse Grained Reconfigurable Arrays/ Architectures (CGRAs) with an arbitrary number of Processing Elements (PE) is difficult. Clock frequency estimation of highly heterogeneous CGRAs takes additional factors into account, thus is even more difficult. Main challenges are the heterogeneous set of operators for each Processing Element (PE) and the irregular interconnect (connecting a CGRA’s PEs). Multiple estimation approaches could be reasonable. We propose an optimized statistical estimator, which is based on our prior work. We demonstrate its superiority to state of the art neural networks in terms of accuracy and robustness, especially in situations with a sparse set of training data.

Freie Schlagworte: Design Space Exploration, Automation, Machine Learning, Coarse Grained Reconfigurable Architecture, Heterogeneity
ID-Nummer: Artikel-ID: 7
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Datentechnik > Rechnersysteme
Hinterlegungsdatum: 26 Okt 2022 07:07
Letzte Änderung: 22 Jul 2024 13:20
PPN: 508920698
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen