TU Darmstadt / ULB / TUbiblio

Thermomechanical Modeling of Amorphous Polymers Through the Glass Transition Region

Blome, Thomas (2022)
Thermomechanical Modeling of Amorphous Polymers Through the Glass Transition Region.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00022487
Dissertation, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

In this thesis, we propose a novel thermodynamically consistent constitutive framework to model amorphous polymers through the glass transition region based on the internal variables approach. The model assumes the thermorheological simplicity hypothesis and covers different relaxation mechanisms related to bulk, shear, thermal stress and entropy relaxation, which are implemented by means of Prony parameters. Although the model is restricted to sufficiently slow processes, it is capable to span a wide range of temperatures of about ±75 °C around a defined reference temperature and predicts finite deformations up to engineering strain levels of 15 %. A key ingredient is the thermoviscoelastic shift function, which is defined in terms of the polymer’s potential internal energy. This allows to capture a variety of material properties intrinsic to amorphous polymers, such as physical aging and pseudo-yielding in tension and compression. In addition, we provide detailed information on the entire algorithmic solution procedure. The spatial discretization is accomplished using the finite element method, while diagonally implicit Runge-Kutta methods serve as the temporal integrator. Finally, we validate the constitutive model on four different polymeric systems, which comprise one thermoplastic (polyvinyl butyral) and three thermosets. The validation includes dilatometric and calorimetric experiments, tension and compression tests at various temperatures as well as three-point and four-point bending tests of laminated glasses with a polyvinyl butyral interlayer.

Typ des Eintrags: Dissertation
Erschienen: 2022
Autor(en): Blome, Thomas
Art des Eintrags: Erstveröffentlichung
Titel: Thermomechanical Modeling of Amorphous Polymers Through the Glass Transition Region
Sprache: Englisch
Referenten: Gruttmann, Prof. Dr. Friedrich ; Müller, Prof. Dr. Ralf
Publikationsjahr: 2022
Ort: Darmstadt
Kollation: xiii, 133, XXXIII Seiten
Datum der mündlichen Prüfung: 14 September 2022
DOI: 10.26083/tuprints-00022487
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22487
Kurzbeschreibung (Abstract):

In this thesis, we propose a novel thermodynamically consistent constitutive framework to model amorphous polymers through the glass transition region based on the internal variables approach. The model assumes the thermorheological simplicity hypothesis and covers different relaxation mechanisms related to bulk, shear, thermal stress and entropy relaxation, which are implemented by means of Prony parameters. Although the model is restricted to sufficiently slow processes, it is capable to span a wide range of temperatures of about ±75 °C around a defined reference temperature and predicts finite deformations up to engineering strain levels of 15 %. A key ingredient is the thermoviscoelastic shift function, which is defined in terms of the polymer’s potential internal energy. This allows to capture a variety of material properties intrinsic to amorphous polymers, such as physical aging and pseudo-yielding in tension and compression. In addition, we provide detailed information on the entire algorithmic solution procedure. The spatial discretization is accomplished using the finite element method, while diagonally implicit Runge-Kutta methods serve as the temporal integrator. Finally, we validate the constitutive model on four different polymeric systems, which comprise one thermoplastic (polyvinyl butyral) and three thermosets. The validation includes dilatometric and calorimetric experiments, tension and compression tests at various temperatures as well as three-point and four-point bending tests of laminated glasses with a polyvinyl butyral interlayer.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

In dieser Arbeit wird ein neuartiges Materialmodell zur Simulation von thermorheologisch einfachen, amorphen Polymerstrukturen entwickelt, welches auf dem Konzept der internen Variablen beruht. Die thermodynamisch konsistenten Materialgleichungen umfassen unterschiedliche Relaxationsmechanismen, welche sowohl das zeitabhängige Verhalten der Volumen- und Gestaltänderung, als auch die Relaxation der thermischen Spannungen und der Entropie abbildet. Das diskrete Relaxationsspektrum wird mit Hilfe von Prony-Parametern umgesetzt. Das Materialmodell umspannt einen weiten Temperaturbereich von ungefähr ±75 °C um eine definierte Referenztemperatur und ermöglicht die Wiedergabe von nichtlinearen Deformationen bis zu 15 % Ingenieursdehnung, wobei von hinreichend langsamen Deformationsvorgängen ausgegangen wird. Ein besonderes Merkmal stellt der thermoviskoelastische Shiftfaktor dar, welcher über die potentielle innere Energie des Polymers definiert ist. Dies ermöglicht die numerische Vorhersage unterschiedlicher konstitutiver Phänomene, wie beispielsweise physikalische Alterung und fließähnliches Verhalten von amorphen Polymeren unter Zug- als auch Druckbeanspruchung. Darüber hinaus wird eine umfangreiche Darstellung der algorithmischen Umsetzung bereitgestellt. Dies umfasst zum einen die Ortsdiskretisierung mit Hilfe der Methode der finiten Elemente, als auch die Zeitdiskretisierung unter Verwendung von diagonal-impliziten Runge-Kutta Verfahren. Das Modell wird schließlich anhand einer Reihe von experimentellen Versuchen an einem Thermoplast (Polyvinylbutyral) und drei Duroplasten validiert. Hierzu zählen dilatometrische und kalorimetrische Simulationen, die numerische Berechnung von Zug- und Druckversuchen bei unterschiedlichen Temperaturen sowie Drei- und Vierpunktbiegeversuche von Verbundsicherheitsgläsern mit einer Zwischenschicht aus Polyvinylbutyral.

Deutsch
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-224876
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Fachgebiete der Mechanik > Fachgebiet Festkörpermechanik
Hinterlegungsdatum: 13 Okt 2022 12:02
Letzte Änderung: 14 Okt 2022 05:50
PPN:
Referenten: Gruttmann, Prof. Dr. Friedrich ; Müller, Prof. Dr. Ralf
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 14 September 2022
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen