TU Darmstadt / ULB / TUbiblio

A Multi‐Functional Separator for Li‐S Batteries: WS₂@C Nanoflowers Catalyze the Rapid Recycling of Lithium Polysulfides by Polar Attraction

Xie, Fanxuan ; Xiong, Man ; Liu, Jiapeng ; Qian, Jingwen ; Mei, Tao ; Li, Jinghua ; Wang, Jianyin ; Yu, Li ; Hofmann, Jan P. ; Wang, Xianbao (2022)
A Multi‐Functional Separator for Li‐S Batteries: WS₂@C Nanoflowers Catalyze the Rapid Recycling of Lithium Polysulfides by Polar Attraction.
In: ChemElectroChem, 2022, 9 (15)
doi: 10.26083/tuprints-00022445
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Featuring high theoretical capacity, environmental friendliness and low cost, lithium‐sulfur (Li‐S) batteries become promising alternatives to satisfy the growing demand for energy storage. To boost their energy density for practical application, modified separators are needed to suppress shuttle effects resulting from the solubility of lithium polysulfides (LiPSs). Herein, we modified traditional polypropylene (PP) separators with functional WS₂@C nanoflower composites (WS₂@C‐PP). They can effectively adsorb LiPSs and catalyze their conversion on the edge sites of the WS₂. Also, the unique construction of a carbon layer coating on the WS₂ nanoflowers combines active sites and conducting properties. The material benefits the reversibility of redox reactions and reutilization of active materials. With the WS₂@C‐PP separator, the cell displays improved cycling stability and rate performance. When cycling at 0.1 C, the cell discharges a capacity of up to 1475 mAh g⁻¹, and it contributes 943 mAh g⁻¹ originally at 1 C, with a decay rate of only 0.07 % after 500 cycles. Our work highlights the potential of functional separators to advance the properties of Li‐S batteries.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Xie, Fanxuan ; Xiong, Man ; Liu, Jiapeng ; Qian, Jingwen ; Mei, Tao ; Li, Jinghua ; Wang, Jianyin ; Yu, Li ; Hofmann, Jan P. ; Wang, Xianbao
Art des Eintrags: Zweitveröffentlichung
Titel: A Multi‐Functional Separator for Li‐S Batteries: WS₂@C Nanoflowers Catalyze the Rapid Recycling of Lithium Polysulfides by Polar Attraction
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ChemElectroChem
Jahrgang/Volume einer Zeitschrift: 9
(Heft-)Nummer: 15
Kollation: 10 Seiten
DOI: 10.26083/tuprints-00022445
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22445
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Featuring high theoretical capacity, environmental friendliness and low cost, lithium‐sulfur (Li‐S) batteries become promising alternatives to satisfy the growing demand for energy storage. To boost their energy density for practical application, modified separators are needed to suppress shuttle effects resulting from the solubility of lithium polysulfides (LiPSs). Herein, we modified traditional polypropylene (PP) separators with functional WS₂@C nanoflower composites (WS₂@C‐PP). They can effectively adsorb LiPSs and catalyze their conversion on the edge sites of the WS₂. Also, the unique construction of a carbon layer coating on the WS₂ nanoflowers combines active sites and conducting properties. The material benefits the reversibility of redox reactions and reutilization of active materials. With the WS₂@C‐PP separator, the cell displays improved cycling stability and rate performance. When cycling at 0.1 C, the cell discharges a capacity of up to 1475 mAh g⁻¹, and it contributes 943 mAh g⁻¹ originally at 1 C, with a decay rate of only 0.07 % after 500 cycles. Our work highlights the potential of functional separators to advance the properties of Li‐S batteries.

Freie Schlagworte: catalyzation, flower-like structure, lithium-sulfur battery, synergistic effect, WS₂ nanosheets
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-224457
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 10 Okt 2022 12:54
Letzte Änderung: 11 Okt 2022 05:15
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen