TU Darmstadt / ULB / TUbiblio

SimAnMo — A parallelized runtime model generator

Burger, Michael ; Nguyen, Giang Nam ; Bischof, Christian (2022)
SimAnMo — A parallelized runtime model generator.
In: Concurrency and Computation: Practice and Experience, 2022, 34 (20)
doi: 10.26083/tuprints-00022440
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In this article, we present the novel features of the recent version of SimAnMo, the Simulated Annealing Modeler. The tool creates models that correlate the size of one input parameter of an application to the corresponding runtime and thus SimAnMo allows predictions for larger input sizes. A focus lies on applications whose runtime grows exponentially in the input parameter size. Such programs are, for example, of high interest for cryptanalysis to analyze practical security of traditional and post‐quantum secure schemes. However, SimAnMo also generates reliable models for the widespread case of polynomial runtime behavior and also for the important case of factorial runtime increase. SimAnMo's model generation is based on a parallelized simulated annealing procedure and heuristically minimizes the costs of a model. Those may rely on different quality metrics. Insights into SimAnMo's software design and its usage are provided. We demonstrate the quality of SimAnMo's models for different algorithms from various application fields. We show that our approach also works well on ARM architectures.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Burger, Michael ; Nguyen, Giang Nam ; Bischof, Christian
Art des Eintrags: Zweitveröffentlichung
Titel: SimAnMo — A parallelized runtime model generator
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: John Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Concurrency and Computation: Practice and Experience
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 20
Kollation: 22 Seiten
DOI: 10.26083/tuprints-00022440
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22440
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

In this article, we present the novel features of the recent version of SimAnMo, the Simulated Annealing Modeler. The tool creates models that correlate the size of one input parameter of an application to the corresponding runtime and thus SimAnMo allows predictions for larger input sizes. A focus lies on applications whose runtime grows exponentially in the input parameter size. Such programs are, for example, of high interest for cryptanalysis to analyze practical security of traditional and post‐quantum secure schemes. However, SimAnMo also generates reliable models for the widespread case of polynomial runtime behavior and also for the important case of factorial runtime increase. SimAnMo's model generation is based on a parallelized simulated annealing procedure and heuristically minimizes the costs of a model. Those may rely on different quality metrics. Insights into SimAnMo's software design and its usage are provided. We demonstrate the quality of SimAnMo's models for different algorithms from various application fields. We show that our approach also works well on ARM architectures.

Freie Schlagworte: exponential runtime, factorial runtime, runtime modeling, runtime prediction
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-224408
Zusätzliche Informationen:

Special Issue: Performance Modeling, Benchmarking and Simulation of High-Performance Computing Systems (PMBS2020). International Conference on Innovations in Intelligent Systems and Applications (INISTA 2021). Recent advances in quantum computing and quantum neural networks

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Scientific Computing
Hinterlegungsdatum: 07 Okt 2022 13:16
Letzte Änderung: 10 Okt 2022 12:42
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen