TU Darmstadt / ULB / TUbiblio

Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies

Salg, Gabriel Alexander ; Blaeser, Andreas ; Gerhardus, Jamina Sofie ; Hackert, Thilo ; Kenngott, Hannes Goetz (2022)
Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies.
In: International Journal of Molecular Sciences, 2022, 23 (15)
doi: 10.26083/tuprints-00022329
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Among advanced therapy medicinal products, tissue-engineered products have the potential to address the current critical shortage of donor organs and provide future alternative options in organ replacement therapy. The clinically available tissue-engineered products comprise bradytrophic tissue such as skin, cornea, and cartilage. A sufficient macro- and microvascular network to support the viability and function of effector cells has been identified as one of the main challenges in developing bioartificial parenchymal tissue. Three-dimensional bioprinting is an emerging technology that might overcome this challenge by precise spatial bioink deposition for the generation of a predefined architecture. Bioinks are printing substrates that may contain cells, matrix compounds, and signaling molecules within support materials such as hydrogels. Bioinks can provide cues to promote vascularization, including proangiogenic signaling molecules and cocultured cells. Both of these strategies are reported to enhance vascularization. We review pre-, intra-, and postprinting strategies such as bioink composition, bioprinting platforms, and material deposition strategies for building vascularized tissue. In addition, bioconvergence approaches such as computer simulation and artificial intelligence can support current experimental designs. Imaging-derived vascular trees can serve as blueprints. While acknowledging that a lack of structured evidence inhibits further meta-analysis, this review discusses an end-to-end process for the fabrication of vascularized, parenchymal tissue.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Salg, Gabriel Alexander ; Blaeser, Andreas ; Gerhardus, Jamina Sofie ; Hackert, Thilo ; Kenngott, Hannes Goetz
Art des Eintrags: Zweitveröffentlichung
Titel: Vascularization in Bioartificial Parenchymal Tissue: Bioink and Bioprinting Strategies
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Molecular Sciences
Jahrgang/Volume einer Zeitschrift: 23
(Heft-)Nummer: 15
Kollation: 25 Seiten
DOI: 10.26083/tuprints-00022329
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22329
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Among advanced therapy medicinal products, tissue-engineered products have the potential to address the current critical shortage of donor organs and provide future alternative options in organ replacement therapy. The clinically available tissue-engineered products comprise bradytrophic tissue such as skin, cornea, and cartilage. A sufficient macro- and microvascular network to support the viability and function of effector cells has been identified as one of the main challenges in developing bioartificial parenchymal tissue. Three-dimensional bioprinting is an emerging technology that might overcome this challenge by precise spatial bioink deposition for the generation of a predefined architecture. Bioinks are printing substrates that may contain cells, matrix compounds, and signaling molecules within support materials such as hydrogels. Bioinks can provide cues to promote vascularization, including proangiogenic signaling molecules and cocultured cells. Both of these strategies are reported to enhance vascularization. We review pre-, intra-, and postprinting strategies such as bioink composition, bioprinting platforms, and material deposition strategies for building vascularized tissue. In addition, bioconvergence approaches such as computer simulation and artificial intelligence can support current experimental designs. Imaging-derived vascular trees can serve as blueprints. While acknowledging that a lack of structured evidence inhibits further meta-analysis, this review discusses an end-to-end process for the fabrication of vascularized, parenchymal tissue.

Freie Schlagworte: tissue engineering, regenerative medicine, bioprinting, vascularization, biomaterial, bioink, additive manufacturing, bioartificial organs
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-223298
Zusätzliche Informationen:

This article belongs to the Special Issue Tissue Engineering and Cell Therapy

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 610 Medizin, Gesundheit
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD)
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD) > Biomedizinische Drucktechnologie (BMT)
Interdisziplinäre Forschungsprojekte
Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology
Hinterlegungsdatum: 12 Sep 2022 13:15
Letzte Änderung: 13 Sep 2022 06:05
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen