TU Darmstadt / ULB / TUbiblio

Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers

Bayer, Markus ; Kaufhold, Marc-André ; Buchhold, Björn ; Keller, Marcel ; Dallmeyer, Jörg ; Reuter, Christian (2022)
Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers.
In: International Journal of Machine Learning and Cybernetics, 2021
doi: 10.26083/tuprints-00022164
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

In many cases of machine learning, research suggests that the development of training data might have a higher relevance than the choice and modelling of classifiers themselves. Thus, data augmentation methods have been developed to improve classifiers by artificially created training data. In NLP, there is the challenge of establishing universal rules for text transformations which provide new linguistic patterns. In this paper, we present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts. We achieved promising improvements when evaluating short as well as long text tasks with the enhancement by our text generation method. Especially with regard to small data analytics, additive accuracy gains of up to 15.53% and 3.56% are achieved within a constructed low data regime, compared to the no augmentation baseline and another data augmentation technique. As the current track of these constructed regimes is not universally applicable, we also show major improvements in several real world low data tasks (up to +4.84 F1-score). Since we are evaluating the method from many perspectives (in total 11 datasets), we also observe situations where the method might not be suitable. We discuss implications and patterns for the successful application of our approach on different types of datasets.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Bayer, Markus ; Kaufhold, Marc-André ; Buchhold, Björn ; Keller, Marcel ; Dallmeyer, Jörg ; Reuter, Christian
Art des Eintrags: Zweitveröffentlichung
Titel: Data augmentation in natural language processing: a novel text generation approach for long and short text classifiers
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal of Machine Learning and Cybernetics
Kollation: 16 Seiten
DOI: 10.26083/tuprints-00022164
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22164
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

In many cases of machine learning, research suggests that the development of training data might have a higher relevance than the choice and modelling of classifiers themselves. Thus, data augmentation methods have been developed to improve classifiers by artificially created training data. In NLP, there is the challenge of establishing universal rules for text transformations which provide new linguistic patterns. In this paper, we present and evaluate a text generation method suitable to increase the performance of classifiers for long and short texts. We achieved promising improvements when evaluating short as well as long text tasks with the enhancement by our text generation method. Especially with regard to small data analytics, additive accuracy gains of up to 15.53% and 3.56% are achieved within a constructed low data regime, compared to the no augmentation baseline and another data augmentation technique. As the current track of these constructed regimes is not universally applicable, we also show major improvements in several real world low data tasks (up to +4.84 F1-score). Since we are evaluating the method from many perspectives (in total 11 datasets), we also observe situations where the method might not be suitable. We discuss implications and patterns for the successful application of our approach on different types of datasets.

Freie Schlagworte: Textual data augmentation, Small text data analytics, Text generation, Long and short text classifier
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-221643
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Wissenschaft und Technik für Frieden und Sicherheit (PEASEC)
Forschungsfelder
Forschungsfelder > Information and Intelligence
Forschungsfelder > Information and Intelligence > Cybersecurity & Privacy
Hinterlegungsdatum: 05 Sep 2022 13:19
Letzte Änderung: 07 Sep 2022 09:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen