Bayer, Markus ; Kaufhold, Marc-André ; Reuter, Christian (2022)
Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies.
European Conference on Information Systems (ECIS 2021). Marrakech, Morocco (14.06.2021-16.06.2021)
doi: 10.26083/tuprints-00022167
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Past studies in the domains of information systems have analysed the potentials and barriers of social media in emergencies. While information disseminated in social media can lead to valuable insights, emergency services and researchers face the challenge of information overload as data quickly exceeds the manageable amount. We propose an embedding-based clustering approach and a method for the automated labelling of clusters. Given that the clustering quality is highly dependent on embeddings, we evaluate 19 embedding models with respect to time, internal cluster quality, and language invariance. The results show that it may be sensible to use embedding models that were already trained on other crisis datasets. However, one must ensure that the training data generalizes enough, so that the clustering can adapt to new situations. Confirming this, we found out that some embeddings were not able to perform as well on a German dataset as on an English dataset.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Bayer, Markus ; Kaufhold, Marc-André ; Reuter, Christian |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Verlag: | AIS |
Buchtitel: | ECIS 2021 Research-in-Progress Papers |
Reihe: | ECIS 2021 Research Papers |
Kollation: | 18 Seiten |
Veranstaltungstitel: | European Conference on Information Systems (ECIS 2021) |
Veranstaltungsort: | Marrakech, Morocco |
Veranstaltungsdatum: | 14.06.2021-16.06.2021 |
DOI: | 10.26083/tuprints-00022167 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/22167 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Past studies in the domains of information systems have analysed the potentials and barriers of social media in emergencies. While information disseminated in social media can lead to valuable insights, emergency services and researchers face the challenge of information overload as data quickly exceeds the manageable amount. We propose an embedding-based clustering approach and a method for the automated labelling of clusters. Given that the clustering quality is highly dependent on embeddings, we evaluate 19 embedding models with respect to time, internal cluster quality, and language invariance. The results show that it may be sensible to use embedding models that were already trained on other crisis datasets. However, one must ensure that the training data generalizes enough, so that the clustering can adapt to new situations. Confirming this, we found out that some embeddings were not able to perform as well on a German dataset as on an English dataset. |
Freie Schlagworte: | Social Media Clustering, Information Overload, Crisis Informatics, Unsupervised Machine Learning |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-221672 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 000 Allgemeines, Informatik, Informationswissenschaft > 070 Nachrichtenmedien, Journalismus, Verlagswesen |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Wissenschaft und Technik für Frieden und Sicherheit (PEASEC) Forschungsfelder Forschungsfelder > Information and Intelligence Forschungsfelder > Information and Intelligence > Cybersecurity & Privacy |
Hinterlegungsdatum: | 05 Sep 2022 13:38 |
Letzte Änderung: | 07 Sep 2022 09:07 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Information Overload in Crisis Management: Bilingual Evaluation of Embedding Models for Clustering Social Media Posts in Emergencies. (deposited 05 Sep 2022 13:38) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |