TU Darmstadt / ULB / TUbiblio

Optimizing System Reliability in Additive Manufacturing Using Physics-Informed Machine Learning

Wenzel, Sören ; Slomski-Vetter, Elena ; Melz, Tobias (2022)
Optimizing System Reliability in Additive Manufacturing Using Physics-Informed Machine Learning.
In: Machines, 2022, 10 (7)
doi: 10.26083/tuprints-00022069
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Fused filament fabrication (FFF), an additive manufacturing process, is an emerging technology with issues in the uncertainty of mechanical properties and quality of printed parts. The consideration of all main and interaction effects when changing print parameters is not efficiently feasible, due to existing stochastic dependencies. To address this issue, a machine learning method is developed to increase reliability by optimizing input parameters and predicting system responses. A structure of artificial neural networks (ANN) is proposed that predicts a system response based on input parameters and observations of the system and similar systems. In this way, significant input parameters for a reliable system can be determined. The ANN structure is part of physics-informed machine learning and is pretrained with domain knowledge (DK) to require fewer observations for full training. This includes theoretical knowledge of idealized systems and measured data. New predictions for a system response can be made without retraining but by using further observations from the predicted system. Therefore, the predictions are available in real time, which is a precondition for the use in industrial environments. Finally, the application of the developed method to print bed adhesion in FFF and the increase in system reliability are discussed and evaluated.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Wenzel, Sören ; Slomski-Vetter, Elena ; Melz, Tobias
Art des Eintrags: Zweitveröffentlichung
Titel: Optimizing System Reliability in Additive Manufacturing Using Physics-Informed Machine Learning
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Machines
Jahrgang/Volume einer Zeitschrift: 10
(Heft-)Nummer: 7
Kollation: 23 Seiten
DOI: 10.26083/tuprints-00022069
URL / URN: https://tuprints.ulb.tu-darmstadt.de/22069
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Fused filament fabrication (FFF), an additive manufacturing process, is an emerging technology with issues in the uncertainty of mechanical properties and quality of printed parts. The consideration of all main and interaction effects when changing print parameters is not efficiently feasible, due to existing stochastic dependencies. To address this issue, a machine learning method is developed to increase reliability by optimizing input parameters and predicting system responses. A structure of artificial neural networks (ANN) is proposed that predicts a system response based on input parameters and observations of the system and similar systems. In this way, significant input parameters for a reliable system can be determined. The ANN structure is part of physics-informed machine learning and is pretrained with domain knowledge (DK) to require fewer observations for full training. This includes theoretical knowledge of idealized systems and measured data. New predictions for a system response can be made without retraining but by using further observations from the predicted system. Therefore, the predictions are available in real time, which is a precondition for the use in industrial environments. Finally, the application of the developed method to print bed adhesion in FFF and the increase in system reliability are discussed and evaluated.

Freie Schlagworte: reliability optimization; physics-informed machine learning; recurrent neural network; knowledge transfer; additive manufacturing; Latin hypercube sampling
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-220695
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet Systemzuverlässigkeit, Adaptronik und Maschinenakustik (SAM)
Hinterlegungsdatum: 24 Aug 2022 12:18
Letzte Änderung: 15 Feb 2023 11:52
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen