TU Darmstadt / ULB / TUbiblio

Frequency- and amplitude- modulated semiconductor laser frequency combs

Auth, Dominik Matthias (2022)
Frequency- and amplitude- modulated semiconductor laser frequency combs.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00021668
Dissertation, Erstveröffentlichung, Verlagsversion

Kurzbeschreibung (Abstract)

Chip-scale coherent semiconductor light sources generating optical frequency combs currently revolutionize mid-infrared on-chip spectroscopy, near-infrared optical communications and nonlinear microscopy. Their key advantages is the efficient generation of narrow and equidistant spectral lines or laser modes with a fixed phase relationship across a broadband spectral region. An attractive realization of such combs is based on nanostructured semiconductor lasers with semiconductor quantum dots forming their active region. In this thesis, frst, the formation of two types of optical frequency combs in a semiconductor quantum dot laser is presented: in-phase synchronization of the intermode beatings, leading to optical pulses, and the splay-phase synchronization, leading to quasi continuous wave optical output. Both states can be generated on demand in a single semiconductor laser. By varying the laser design and the biasing conditions, frequency- and amplitude-modulated combs can be generated on demand. Second, based on their identifed particular temporal characteristics, a novel technique to determine the sensitivity of semiconductor laser frequency combs to optical feedback, is presented. Results suggest, that amplitude-modulated semiconductor laser frequency combs are less sensitive to optical feedback than frequency-modulated semiconductor laser frequency combs. The developed insights are expected to elevate semiconductor laser frequency combs in current and future integrated photonic circuits in optical communications, where unavoidable optical feedback from downstream active and passive components deteriorates comb stability.

Typ des Eintrags: Dissertation
Erschienen: 2022
Autor(en): Auth, Dominik Matthias
Art des Eintrags: Erstveröffentlichung
Titel: Frequency- and amplitude- modulated semiconductor laser frequency combs
Sprache: Englisch
Referenten: Breuer, PD Dr. Stefan ; Elsäßer, Prof. Dr. Wolfgang
Publikationsjahr: 2022
Ort: Darmstadt
Kollation: viii, 180 Seiten
Datum der mündlichen Prüfung: 13 Dezember 2021
DOI: 10.26083/tuprints-00021668
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21668
Kurzbeschreibung (Abstract):

Chip-scale coherent semiconductor light sources generating optical frequency combs currently revolutionize mid-infrared on-chip spectroscopy, near-infrared optical communications and nonlinear microscopy. Their key advantages is the efficient generation of narrow and equidistant spectral lines or laser modes with a fixed phase relationship across a broadband spectral region. An attractive realization of such combs is based on nanostructured semiconductor lasers with semiconductor quantum dots forming their active region. In this thesis, frst, the formation of two types of optical frequency combs in a semiconductor quantum dot laser is presented: in-phase synchronization of the intermode beatings, leading to optical pulses, and the splay-phase synchronization, leading to quasi continuous wave optical output. Both states can be generated on demand in a single semiconductor laser. By varying the laser design and the biasing conditions, frequency- and amplitude-modulated combs can be generated on demand. Second, based on their identifed particular temporal characteristics, a novel technique to determine the sensitivity of semiconductor laser frequency combs to optical feedback, is presented. Results suggest, that amplitude-modulated semiconductor laser frequency combs are less sensitive to optical feedback than frequency-modulated semiconductor laser frequency combs. The developed insights are expected to elevate semiconductor laser frequency combs in current and future integrated photonic circuits in optical communications, where unavoidable optical feedback from downstream active and passive components deteriorates comb stability.

Alternatives oder übersetztes Abstract:
Alternatives AbstractSprache

Kohärente Halbleiterlichtquellen im Chip-Maßstab, die optische Frequenzkämme erzeugen, revolutionieren derzeit die On-Chip-Spektroskopie im mittleren Infrarot, die optische Kommunikation im nahen Infrarot und die nichtlineare Mikroskopie. Sie erlauben die effiziente Erzeugung schmaler und äquidistanter Spektrallinien oder Lasermoden mit fester Phasenbeziehung über einen breitbandigen Spektralbereich. Eine attraktive Realisierung solcher Kämme basiert auf nanostrukturierten Halbleiterlasern deren aktive Zone aus Quantenpunkten besteht. In dieser Arbeit wird zunächst die Bildung von zwei Arten optischer Frequenzkämme in einem Halbleiter-Quantenpunktlaser vorgestellt: die phasengleiche Synchronisation der Intermoden-Schwebungen, die zu optischen Pulsen führt, und die Spreizphasensynchronisation, die zu quasi-kontinuierlicher optischer Lichtemission führt. Beide Zustände können bei Bedarf in einem einzigen Halbleiterlaser erzeugt werden. Durch Variation des Laserdesigns und der Betriebsparameter können bei Bedarf frequenz- und amplitudenmodulierte Kämme erzeugt werden. Zweitens wird, basierend auf ihren identifzierten besonderen zeitlichen Eigenschaften, eine neue Methode vorgestellt, um die Empfindlichkeit von Halbleiterlaser-Frequenzkämmen gegenüber optischer Rückkopplung zu bestimmen. Die Ergebnisse zeigen, dass amplitudenmodulierte Halbleiterlaser-Frequenzkämme weniger empfindlich sind als frequenzmodulierte Halbleiterlaser-Frequenzkämme. Die erzielten Erkenntnisse erlauben es, von Halbleiterlasern erzeugte Frequenzkämme in aktuellen und zukünftigen integrierten photonischen Schaltungen in der optischen Kommunikation zu verbessern, bei denen unvermeidbare optische Rückkopplungen von nachgeschalteten aktiven und passiven Komponenten die Kammstabilität beeinträchtigen.

Deutsch
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-216687
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Halbleiter Optik
Hinterlegungsdatum: 22 Aug 2022 11:14
Letzte Änderung: 14 Dez 2022 18:39
PPN: 498498956
Referenten: Breuer, PD Dr. Stefan ; Elsäßer, Prof. Dr. Wolfgang
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: 13 Dezember 2021
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen