TU Darmstadt / ULB / TUbiblio

Clean and Hydrogen‐Adsorbed AlInP(001) Surfaces: Structures and Electronic Properties

Glahn, Luis Joel ; Ruiz Alvarado, Isaac Azahel ; Neufeld, Sergej ; Zare Pour, Mohammad Amin ; Paszuk, Agnieszka ; Ostheimer, David ; Shekarabi, Sahar ; Romanyuk, Oleksandr ; Moritz, Dominik Christian ; Hofmann, Jan Philipp ; Jaegermann, Wolfram ; Hannappel, Thomas ; Schmidt, Wolf Gero (2022)
Clean and Hydrogen‐Adsorbed AlInP(001) Surfaces: Structures and Electronic Properties.
In: physica status solidi (b), 259 (11)
doi: 10.1002/pssb.202200308
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Total energy and electronic structure calculations based on density functional theory are performed in order to determine the atomic structure and electronic properties of clean and hydrogen‐adsorbed Al₀.₅In₀.₅P(001) surfaces. It is found that most of the stable surfaces obey the electron‐counting rule and are characterized by surface atom dimerization. The dimer‐related surface states are predicted to occur in the vicinity of the bulk band edges. For a very narrow range of preparation conditions, ab initio thermodynamics predicts metal atomic wires formed by surface cations. A surface covered with a monolayer of buckled phosphorus dimers, where half of the phosphorus atoms are hydrogen saturated, is found to be stable for metal–organic vapor‐phase epitaxy growth conditions. The occurrence of this structure is confirmed by low‐energy electron diffraction and X‐ray photoelectron spectroscopy data measured on epitaxially grown Al₀.₅₂In₀.₄₈P(001) epilayers lattice matched to GaAs.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Glahn, Luis Joel ; Ruiz Alvarado, Isaac Azahel ; Neufeld, Sergej ; Zare Pour, Mohammad Amin ; Paszuk, Agnieszka ; Ostheimer, David ; Shekarabi, Sahar ; Romanyuk, Oleksandr ; Moritz, Dominik Christian ; Hofmann, Jan Philipp ; Jaegermann, Wolfram ; Hannappel, Thomas ; Schmidt, Wolf Gero
Art des Eintrags: Bibliographie
Titel: Clean and Hydrogen‐Adsorbed AlInP(001) Surfaces: Structures and Electronic Properties
Sprache: Englisch
Publikationsjahr: 10 August 2022
Ort: Weinheim
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: physica status solidi (b)
Jahrgang/Volume einer Zeitschrift: 259
(Heft-)Nummer: 11
DOI: 10.1002/pssb.202200308
Zugehörige Links:
Kurzbeschreibung (Abstract):

Total energy and electronic structure calculations based on density functional theory are performed in order to determine the atomic structure and electronic properties of clean and hydrogen‐adsorbed Al₀.₅In₀.₅P(001) surfaces. It is found that most of the stable surfaces obey the electron‐counting rule and are characterized by surface atom dimerization. The dimer‐related surface states are predicted to occur in the vicinity of the bulk band edges. For a very narrow range of preparation conditions, ab initio thermodynamics predicts metal atomic wires formed by surface cations. A surface covered with a monolayer of buckled phosphorus dimers, where half of the phosphorus atoms are hydrogen saturated, is found to be stable for metal–organic vapor‐phase epitaxy growth conditions. The occurrence of this structure is confirmed by low‐energy electron diffraction and X‐ray photoelectron spectroscopy data measured on epitaxially grown Al₀.₅₂In₀.₄₈P(001) epilayers lattice matched to GaAs.

Freie Schlagworte: AlInP, density functional theory, electronic properties, surface structures, X-ray photoelectron spectroscopy
Zusätzliche Informationen:

Artikel-ID: 2200308

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Oberflächenforschung
Hinterlegungsdatum: 23 Aug 2022 13:29
Letzte Änderung: 10 Mai 2024 07:12
PPN: 498564762
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen