TU Darmstadt / ULB / TUbiblio

Evaluation of Fe-nitrides, -borides and -carbides for enhanced magnetic fluid hyperthermia with experimental study of α′′-Fe16N2 and ε-Fe3N nanoparticles

Dirba, Imants ; Chandra, Caroline Karina ; Ablets, Yevhen ; Kohout, Jaroslav ; Kmječ, Tomáš ; Kaman, Ondřej ; Gutfleisch, Oliver (2022)
Evaluation of Fe-nitrides, -borides and -carbides for enhanced magnetic fluid hyperthermia with experimental study of α′′-Fe16N2 and ε-Fe3N nanoparticles.
In: Journal of Physics D: Applied Physics, 56 (2)
doi: 10.1088/1361-6463/aca0a9
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

In this work, we investigate alternative materials systems that, based on their intrinsic magnetic properties, have the potential to deliver enhanced heating power in magnetic fluid hyperthermia. The focus lies on systems with high magnetization phases, namely iron-nitrogen (Fe-N), iron-boron (Fe-B) and iron-carbon (Fe-C) compounds, and their performance in comparison to the conventionally used iron oxides, γ-Fe2O3, Fe3O4 and non-stoichiometric mixtures thereof. The heating power as a function of the applied alternating magnetic field frequency is calculated and the peak particle size with the maximum specific loss power (SLP) for each material is identified. It is found that lower anisotropy results in larger optimum particle size and more tolerance for polydispersity. The effect of nanoparticle saturation magnetization and anisotropy is simulated, and the results show that in order to maximize SLP, a material with high magnetization but low anisotropy provides the best combination. These findings are juxtaposed with experimental results of a comparative study of iron nitrides, namely α''-Fe16N2 and epsilon-Fe3N nanoparticles, and model nanoparticles of iron oxides. The former ones are studied as heating agents for magnetic fluid hyperthermia for the first time.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Dirba, Imants ; Chandra, Caroline Karina ; Ablets, Yevhen ; Kohout, Jaroslav ; Kmječ, Tomáš ; Kaman, Ondřej ; Gutfleisch, Oliver
Art des Eintrags: Bibliographie
Titel: Evaluation of Fe-nitrides, -borides and -carbides for enhanced magnetic fluid hyperthermia with experimental study of α′′-Fe16N2 and ε-Fe3N nanoparticles
Sprache: Englisch
Publikationsjahr: Dezember 2022
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Journal of Physics D: Applied Physics
Jahrgang/Volume einer Zeitschrift: 56
(Heft-)Nummer: 2
DOI: 10.1088/1361-6463/aca0a9
Zugehörige Links:
Kurzbeschreibung (Abstract):

In this work, we investigate alternative materials systems that, based on their intrinsic magnetic properties, have the potential to deliver enhanced heating power in magnetic fluid hyperthermia. The focus lies on systems with high magnetization phases, namely iron-nitrogen (Fe-N), iron-boron (Fe-B) and iron-carbon (Fe-C) compounds, and their performance in comparison to the conventionally used iron oxides, γ-Fe2O3, Fe3O4 and non-stoichiometric mixtures thereof. The heating power as a function of the applied alternating magnetic field frequency is calculated and the peak particle size with the maximum specific loss power (SLP) for each material is identified. It is found that lower anisotropy results in larger optimum particle size and more tolerance for polydispersity. The effect of nanoparticle saturation magnetization and anisotropy is simulated, and the results show that in order to maximize SLP, a material with high magnetization but low anisotropy provides the best combination. These findings are juxtaposed with experimental results of a comparative study of iron nitrides, namely α''-Fe16N2 and epsilon-Fe3N nanoparticles, and model nanoparticles of iron oxides. The former ones are studied as heating agents for magnetic fluid hyperthermia for the first time.

Zusätzliche Informationen:

Artikel-ID: 025001

Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Funktionale Materialien
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1487: Eisen, neu gedacht!
Hinterlegungsdatum: 16 Mär 2023 06:04
Letzte Änderung: 27 Sep 2024 05:56
PPN: 506069796
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen