TU Darmstadt / ULB / TUbiblio

Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors

Damer, Naser ; López, César Augusto Fontanillo ; Fang, Meiling ; Spiller, Noémie ; Pham, Minh Vu ; Boutros, Fadi (2022)
Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022). New Orleans, USA (19.06.2022-24.06.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

The main question this work aims at answering is: ”can morphing attack detection (MAD) solutions be successfully developed based on synthetic data?”. Towards that, this work introduces the first synthetic-based MAD development dataset, namely the Synthetic Morphing Attack Detection Development dataset (SMDD). This dataset is utilized successfully to train three MAD backbones where it proved to lead to high MAD performance, even on completely unknown attack types. Additionally, an essential aspect of this work is the detailed legal analyses of the challenges of using and sharing real biometric data, rendering our proposed SMDD dataset extremely essential. The SMDD dataset, consisting of 30,000 attack and 50,000 bona fide samples, is publicly available for research purposes.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Damer, Naser ; López, César Augusto Fontanillo ; Fang, Meiling ; Spiller, Noémie ; Pham, Minh Vu ; Boutros, Fadi
Art des Eintrags: Bibliographie
Titel: Privacy-friendly Synthetic Data for the Development of Face Morphing Attack Detectors
Sprache: Englisch
Publikationsjahr: 15 August 2022
Veranstaltungstitel: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2022)
Veranstaltungsort: New Orleans, USA
Veranstaltungsdatum: 19.06.2022-24.06.2022
Zugehörige Links:
Kurzbeschreibung (Abstract):

The main question this work aims at answering is: ”can morphing attack detection (MAD) solutions be successfully developed based on synthetic data?”. Towards that, this work introduces the first synthetic-based MAD development dataset, namely the Synthetic Morphing Attack Detection Development dataset (SMDD). This dataset is utilized successfully to train three MAD backbones where it proved to lead to high MAD performance, even on completely unknown attack types. Additionally, an essential aspect of this work is the detailed legal analyses of the challenges of using and sharing real biometric data, rendering our proposed SMDD dataset extremely essential. The SMDD dataset, consisting of 30,000 attack and 50,000 bona fide samples, is publicly available for research purposes.

Freie Schlagworte: Biometrics, Morphing attack, Face recognition, Machine learning, Deep learning
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Graphisch-Interaktive Systeme
Hinterlegungsdatum: 16 Aug 2022 09:43
Letzte Änderung: 16 Nov 2022 09:09
PPN: 501691340
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen