Nasiri, Mahdi ; Liebchen, Benno (2022)
Reinforcement learning of optimal active particle navigation.
In: New Journal of Physics, 2022, 24 (7)
doi: 10.26083/tuprints-00021998
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
The development of self-propelled particles at the micro- and the nanoscale has sparked a huge potential for future applications in active matter physics, microsurgery, and targeted drug delivery. However, while the latter applications provoke the quest on how to optimally navigate towards a target, such as e.g. a cancer cell, there is still no simple way known to determine the optimal route in sufficiently complex environments. Here we develop a machine learning-based approach that allows us, for the first time, to determine the asymptotically optimal path of a self-propelled agent which can freely steer in complex environments. Our method hinges on policy gradient-based deep reinforcement learning techniques and, crucially, does not require any reward shaping or heuristics. The presented method provides a powerful alternative to current analytical methods to calculate optimal trajectories and opens a route towards a universal path planner for future intelligent active particles.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Nasiri, Mahdi ; Liebchen, Benno |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Reinforcement learning of optimal active particle navigation |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | IOP Publishing |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | New Journal of Physics |
Jahrgang/Volume einer Zeitschrift: | 24 |
(Heft-)Nummer: | 7 |
Kollation: | 7 Seiten |
DOI: | 10.26083/tuprints-00021998 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21998 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | The development of self-propelled particles at the micro- and the nanoscale has sparked a huge potential for future applications in active matter physics, microsurgery, and targeted drug delivery. However, while the latter applications provoke the quest on how to optimally navigate towards a target, such as e.g. a cancer cell, there is still no simple way known to determine the optimal route in sufficiently complex environments. Here we develop a machine learning-based approach that allows us, for the first time, to determine the asymptotically optimal path of a self-propelled agent which can freely steer in complex environments. Our method hinges on policy gradient-based deep reinforcement learning techniques and, crucially, does not require any reward shaping or heuristics. The presented method provides a powerful alternative to current analytical methods to calculate optimal trajectories and opens a route towards a universal path planner for future intelligent active particles. |
Freie Schlagworte: | active matter physics, colloids, soft matter physics, microswimmers, optimal navigation, reinforcement learning, optimization |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-219986 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 530 Physik |
Fachbereich(e)/-gebiet(e): | 05 Fachbereich Physik 05 Fachbereich Physik > Institut für Physik Kondensierter Materie (IPKM) |
Hinterlegungsdatum: | 12 Aug 2022 12:06 |
Letzte Änderung: | 16 Aug 2022 08:21 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Reinforcement learning of optimal active particle navigation. (deposited 12 Aug 2022 12:06) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |