TU Darmstadt / ULB / TUbiblio

Machine Learning for Computer Systems and Networking: A Survey

Kanakis, Marios Evangelos ; Khalili, Ramin ; Wang, Lin (2022)
Machine Learning for Computer Systems and Networking: A Survey.
In: ACM Computing Surveys, (Early Access)
doi: 10.1145/3523057
Artikel, Bibliographie

Kurzbeschreibung (Abstract)

Machine learning has become the de-facto approach for various scientific domains such as computer vision and natural language processing. Despite recent breakthroughs, machine learning has only made its way into the fundamental challenges in computer systems and networking recently. This paper attempts to shed light on recent literature that appeals for machine learning based solutions to traditional problems in computer systems and networking. To this end, we first introduce a taxonomy based on a set of major research problem domains. Then, we present a comprehensive review per domain, where we compare the traditional approaches against the machine learning based ones. Finally, we discuss the general limitations of machine learning for computer systems and networking, including lack of training data, training overhead, real-time performance, and explainability, and reveal future research directions targeting these limitations.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Kanakis, Marios Evangelos ; Khalili, Ramin ; Wang, Lin
Art des Eintrags: Bibliographie
Titel: Machine Learning for Computer Systems and Networking: A Survey
Sprache: Englisch
Publikationsjahr: 9 März 2022
Ort: New York, NY, USA
Verlag: ACM
Titel der Zeitschrift, Zeitung oder Schriftenreihe: ACM Computing Surveys
(Heft-)Nummer: Early Access
DOI: 10.1145/3523057
URL / URN: https://dl.acm.org/doi/abs/10.1145/3523057
Kurzbeschreibung (Abstract):

Machine learning has become the de-facto approach for various scientific domains such as computer vision and natural language processing. Despite recent breakthroughs, machine learning has only made its way into the fundamental challenges in computer systems and networking recently. This paper attempts to shed light on recent literature that appeals for machine learning based solutions to traditional problems in computer systems and networking. To this end, we first introduce a taxonomy based on a set of major research problem domains. Then, we present a comprehensive review per domain, where we compare the traditional approaches against the machine learning based ones. Finally, we discuss the general limitations of machine learning for computer systems and networking, including lack of training data, training overhead, real-time performance, and explainability, and reveal future research directions targeting these limitations.

Freie Schlagworte: machine learning, computer networking, computer systems
Zusätzliche Informationen:

Just Accepted

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > B: Adaptionsmechanismen > Teilprojekt B2: Koordination und Ausführung
Hinterlegungsdatum: 16 Aug 2022 08:14
Letzte Änderung: 05 Dez 2022 14:04
PPN: 502290749
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen