Höchst, Jonas ; Bellafkir, Hicham ; Lampe, Patrick ; Vogelbacher, Markus ; Mühling, Markus ; Schneider, Daniel ; Lindner, Kim ; Rösner, Sascha ; Schabo, Dana G. ; Farwig, Nina ; Freisleben, Bernd (2022)
Bird@Edge: Bird Species Recognition at the Edge.
10th Edition of the International Conference on Networked Systems (NETYS 2022). virtual Conference (17.05.2022-19.05.2022)
doi: 10.1007/978-3-031-17436-0_6
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
We present Bird@Edge, an Edge AI system for recognizing bird species in audio recordings to support real-time biodiversity monitoring. Bird@Edge is based on embedded edge devices operating in a distributed system to enable efficient, continuous evaluation of soundscapes recorded in forests. Multiple ESP32-based microphones (called Bird@Edge Mics) stream audio to a local Bird@Edge Station, on which bird species recognition is performed. The results of several Bird@Edge Stations are transmitted to a backend cloud for further analysis, e.g., by biodiversity researchers. To recognize bird species in soundscapes, a deep neural network based on the EfficientNet-B3 architecture is trained and optimized for execution on embedded edge devices and deployed on a NVIDIA Jetson Nano board using the DeepStream SDK. Our experiments show that our deep neural network outperforms the state-of-the-art BirdNET neural network on several data sets and achieves a recognition quality of up to 95.2% mean average precision on soundscape recordings in the Marburg Open Forest, a research and teaching forest of the University of Marburg, Germany. Measurements of the power consumption of the Bird@Edge components highlight the real-world applicability of the approach. All software and firmware components of Bird@Edge are available under open source licenses.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Höchst, Jonas ; Bellafkir, Hicham ; Lampe, Patrick ; Vogelbacher, Markus ; Mühling, Markus ; Schneider, Daniel ; Lindner, Kim ; Rösner, Sascha ; Schabo, Dana G. ; Farwig, Nina ; Freisleben, Bernd |
Art des Eintrags: | Bibliographie |
Titel: | Bird@Edge: Bird Species Recognition at the Edge |
Sprache: | Englisch |
Publikationsjahr: | 17 Mai 2022 |
Verlag: | Springer |
Reihe: | Lecture Notes in Computer Science |
Band einer Reihe: | 13464 |
Veranstaltungstitel: | 10th Edition of the International Conference on Networked Systems (NETYS 2022) |
Veranstaltungsort: | virtual Conference |
Veranstaltungsdatum: | 17.05.2022-19.05.2022 |
DOI: | 10.1007/978-3-031-17436-0_6 |
URL / URN: | https://link.springer.com/chapter/10.1007/978-3-031-17436-0_... |
Kurzbeschreibung (Abstract): | We present Bird@Edge, an Edge AI system for recognizing bird species in audio recordings to support real-time biodiversity monitoring. Bird@Edge is based on embedded edge devices operating in a distributed system to enable efficient, continuous evaluation of soundscapes recorded in forests. Multiple ESP32-based microphones (called Bird@Edge Mics) stream audio to a local Bird@Edge Station, on which bird species recognition is performed. The results of several Bird@Edge Stations are transmitted to a backend cloud for further analysis, e.g., by biodiversity researchers. To recognize bird species in soundscapes, a deep neural network based on the EfficientNet-B3 architecture is trained and optimized for execution on embedded edge devices and deployed on a NVIDIA Jetson Nano board using the DeepStream SDK. Our experiments show that our deep neural network outperforms the state-of-the-art BirdNET neural network on several data sets and achieves a recognition quality of up to 95.2% mean average precision on soundscape recordings in the Marburg Open Forest, a research and teaching forest of the University of Marburg, Germany. Measurements of the power consumption of the Bird@Edge components highlight the real-world applicability of the approach. All software and firmware components of Bird@Edge are available under open source licenses. |
Freie Schlagworte: | Bird Species Recognition, Edge Computing, Passive Acoustic Monitoring, Biodiversity, emergenCITY, emergenCITY_KOM |
Zusätzliche Informationen: | Presentation at the youtube-Channel of Netys-2022 |
Fachbereich(e)/-gebiet(e): | DFG-Sonderforschungsbereiche (inkl. Transregio) DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche LOEWE LOEWE > LOEWE-Zentren LOEWE > LOEWE-Zentren > emergenCITY DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1053: MAKI – Multi-Mechanismen-Adaption für das künftige Internet > A: Konstruktionsmethodik > Teilprojekt A3: Migration |
Hinterlegungsdatum: | 15 Aug 2022 07:47 |
Letzte Änderung: | 12 Jan 2024 08:51 |
PPN: | 502047429 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |