Klein, Dominik K. ; Fernández, Mauricio ; Martin, Robert J. ; Neff, Patrizio ; Weeger, Oliver (2023)
Polyconvex anisotropic hyperelasticity with neural networks.
In: Journal of the Mechanics and Physics of Solids, 2021, 159
doi: 10.26083/tuprints-00020163
Artikel, Zweitveröffentlichung, Postprint
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
In the present work, two machine learning based constitutive models for finite deformations are proposed. Using input convex neural networks, the models are hyperelastic, anisotropic and fulfill the polyconvexity condition, which implies ellipticity and thus ensures material stability. The first constitutive model is based on a set of polyconvex, anisotropic and objective invariants. The second approach is formulated in terms of the deformation gradient, its cofactor and determinant, uses group symmetrization to fulfill the material symmetry condition, and data augmentation to fulfill objectivity approximately. The extension of the dataset for the data augmentation approach is based on mechanical considerations and does not require additional experimental or simulation data. The models are calibrated with highly challenging simulation data of cubic lattice metamaterials, including finite deformations and lattice instabilities. A moderate amount of calibration data is used, based on deformations which are commonly applied in experimental investigations. While the invariant-based model shows drawbacks for several deformation modes, the model based on the deformation gradient alone is able to reproduce and predict the effective material behavior very well and exhibits excellent generalization capabilities. In addition, the models are calibrated with transversely isotropic data, generated with an analytical polyconvex potential. For this case, both models show excellent results, demonstrating the straightforward applicability of the polyconvex neural network constitutive models to other symmetry groups.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2023 |
Autor(en): | Klein, Dominik K. ; Fernández, Mauricio ; Martin, Robert J. ; Neff, Patrizio ; Weeger, Oliver |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Polyconvex anisotropic hyperelasticity with neural networks |
Sprache: | Englisch |
Publikationsjahr: | 2023 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2021 |
Verlag: | Elsevier |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Journal of the Mechanics and Physics of Solids |
Jahrgang/Volume einer Zeitschrift: | 159 |
Kollation: | 32 Seiten |
DOI: | 10.26083/tuprints-00020163 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/20163 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | In the present work, two machine learning based constitutive models for finite deformations are proposed. Using input convex neural networks, the models are hyperelastic, anisotropic and fulfill the polyconvexity condition, which implies ellipticity and thus ensures material stability. The first constitutive model is based on a set of polyconvex, anisotropic and objective invariants. The second approach is formulated in terms of the deformation gradient, its cofactor and determinant, uses group symmetrization to fulfill the material symmetry condition, and data augmentation to fulfill objectivity approximately. The extension of the dataset for the data augmentation approach is based on mechanical considerations and does not require additional experimental or simulation data. The models are calibrated with highly challenging simulation data of cubic lattice metamaterials, including finite deformations and lattice instabilities. A moderate amount of calibration data is used, based on deformations which are commonly applied in experimental investigations. While the invariant-based model shows drawbacks for several deformation modes, the model based on the deformation gradient alone is able to reproduce and predict the effective material behavior very well and exhibits excellent generalization capabilities. In addition, the models are calibrated with transversely isotropic data, generated with an analytical polyconvex potential. For this case, both models show excellent results, demonstrating the straightforward applicability of the polyconvex neural network constitutive models to other symmetry groups. |
Freie Schlagworte: | constitutive modeling, nonlinear elasticity, anisotropic hyperelasticity, polyconvexity, ellipticity, material stability, soft materials, metamaterials, invariants, structural tensors, parameter identification, data-driven modeling, machine learning, input convex neural networks |
Status: | Postprint |
URN: | urn:nbn:de:tuda-tuprints-201634 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Fachgebiet Cyber-Physische Simulation (CPS) |
Hinterlegungsdatum: | 03 Aug 2022 12:18 |
Letzte Änderung: | 04 Aug 2022 05:05 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Polyconvex anisotropic hyperelasticity with neural networks. (deposited 03 Aug 2022 12:18) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |