Gurevych, Iryna ; Kohler, Michael ; Şahin, Gözde Gül (2022)
On the rate of convergence of a classifier based on a Transformer encoder.
In: IEEE Transactions on Information Theory, 68 (12)
doi: 10.1109/TIT.2022.3191747
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
Pattern recognition based on a high-dimensional predictor is considered. A classifier is defined which is based on a Transformer encoder. The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed. It is shown that this classifier is able to circumvent the curse of dimensionality provided the a posteriori probability satisfies a suitable hierarchical composition model. Furthermore, the difference between the Transformer classifiers theoretically analyzed in this paper and the ones used in practice today is illustrated by means of classification problems in natural language processing.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Gurevych, Iryna ; Kohler, Michael ; Şahin, Gözde Gül |
Art des Eintrags: | Bibliographie |
Titel: | On the rate of convergence of a classifier based on a Transformer encoder |
Sprache: | Englisch |
Publikationsjahr: | 1 Dezember 2022 |
Verlag: | IEEE |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | IEEE Transactions on Information Theory |
Jahrgang/Volume einer Zeitschrift: | 68 |
(Heft-)Nummer: | 12 |
DOI: | 10.1109/TIT.2022.3191747 |
Kurzbeschreibung (Abstract): | Pattern recognition based on a high-dimensional predictor is considered. A classifier is defined which is based on a Transformer encoder. The rate of convergence of the misclassification probability of the classifier towards the optimal misclassification probability is analyzed. It is shown that this classifier is able to circumvent the curse of dimensionality provided the a posteriori probability satisfies a suitable hierarchical composition model. Furthermore, the difference between the Transformer classifiers theoretically analyzed in this paper and the ones used in practice today is illustrated by means of classification problems in natural language processing. |
Fachbereich(e)/-gebiet(e): | 20 Fachbereich Informatik 20 Fachbereich Informatik > Ubiquitäre Wissensverarbeitung |
Hinterlegungsdatum: | 25 Jul 2022 11:27 |
Letzte Änderung: | 12 Jan 2023 07:47 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |