TU Darmstadt / ULB / TUbiblio

Wettability-defined droplet imbibition in ceramic mesopores

Khalil, Adnan ; Schäfer, Felix ; Postulka, Niels ; Stanzel, Mathias ; Biesalski, Markus ; Andrieu-Brunsen, Annette (2022)
Wettability-defined droplet imbibition in ceramic mesopores.
In: Nanoscale, 2020, 12 (47)
doi: 10.26083/tuprints-00021744
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Wettability-defined liquid infiltration into porous materials in nature and several industrial applications is of fundamental interest. Direct observation of wetting-controlled imbibition in mesopores is anticipated to deliver important insights into the interplay between nanoconfined liquid movement and nanoscale wettability. We present a systematic study of water imbibition into mesoporous silica thin films with wetting properties precisely adjusted through chemical functionalization. We observe the liquid infiltration, resulting in an imbibition ring around the water droplet, by top-view imaging using a camera with collimated coaxial illumination. With decreasing hydrophilicity, the maximum imbibition area around the droplet decreases, accompanied by a simultaneous change in the imbibition kinetics and imbibition mechanism. Initially, the imbibition kinetics follow a modified Lucas–Washburn law that considers a strong influence of evaporation. However, with increasing imbibition time after reaching constant imbibition ring dimensions, the imbibition area starts to increase again, causing a deviation from the applied model. This observation is ascribed to water-mediated surface activation at the imbibition front, leading to a slightly increased wettability, which is also confirmed by water adsorption measurements. Furthermore, recently described spontaneous condensation-evaporation imbalances that cause oscillations of the imbibition front could be verified and were studied with regard to changing wetting properties. By increasing the contact angle of the material and therefore the partial pressure needed for capillary condensation, the amplitude of the imbibition front oscillations decreases. These results provide insights into the wettability-defined complex movement of water in mesoporous structures, which has practical implications, e.g., for nano/microfluidic devices and water purification or harvesting.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Khalil, Adnan ; Schäfer, Felix ; Postulka, Niels ; Stanzel, Mathias ; Biesalski, Markus ; Andrieu-Brunsen, Annette
Art des Eintrags: Zweitveröffentlichung
Titel: Wettability-defined droplet imbibition in ceramic mesopores
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: Royal Society of Chemistry
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanoscale
Jahrgang/Volume einer Zeitschrift: 12
(Heft-)Nummer: 47
Kollation: 8 Seiten
DOI: 10.26083/tuprints-00021744
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21744
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Wettability-defined liquid infiltration into porous materials in nature and several industrial applications is of fundamental interest. Direct observation of wetting-controlled imbibition in mesopores is anticipated to deliver important insights into the interplay between nanoconfined liquid movement and nanoscale wettability. We present a systematic study of water imbibition into mesoporous silica thin films with wetting properties precisely adjusted through chemical functionalization. We observe the liquid infiltration, resulting in an imbibition ring around the water droplet, by top-view imaging using a camera with collimated coaxial illumination. With decreasing hydrophilicity, the maximum imbibition area around the droplet decreases, accompanied by a simultaneous change in the imbibition kinetics and imbibition mechanism. Initially, the imbibition kinetics follow a modified Lucas–Washburn law that considers a strong influence of evaporation. However, with increasing imbibition time after reaching constant imbibition ring dimensions, the imbibition area starts to increase again, causing a deviation from the applied model. This observation is ascribed to water-mediated surface activation at the imbibition front, leading to a slightly increased wettability, which is also confirmed by water adsorption measurements. Furthermore, recently described spontaneous condensation-evaporation imbalances that cause oscillations of the imbibition front could be verified and were studied with regard to changing wetting properties. By increasing the contact angle of the material and therefore the partial pressure needed for capillary condensation, the amplitude of the imbibition front oscillations decreases. These results provide insights into the wettability-defined complex movement of water in mesoporous structures, which has practical implications, e.g., for nano/microfluidic devices and water purification or harvesting.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-217445
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
Fachbereich(e)/-gebiet(e): DFG-Sonderforschungsbereiche (inkl. Transregio)
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich A: Generische Experimente > A05: Benetzung und Transport auf quellbaren, oberflächen-immobilisierten Polymerbürsten und Polymernetzwerken
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich C: Neue und verbesserte Anwendungen
DFG-Sonderforschungsbereiche (inkl. Transregio) > Sonderforschungsbereiche > SFB 1194: Wechselseitige Beeinflussung von Transport- und Benetzungsvorgängen > Projektbereich C: Neue und verbesserte Anwendungen > C04: Dynamische Benetzungssteuerung und der Einfluss auf ionischen Stofftransport in mesoporöse Filme
Profilbereiche
Profilbereiche > Thermo-Fluids & Interfaces
07 Fachbereich Chemie
07 Fachbereich Chemie > Ernst-Berl-Institut
07 Fachbereich Chemie > Ernst-Berl-Institut > Fachgebiet Makromolekulare Chemie
TU-Projekte: DFG|SFB1194|TP A05 Biesalski
DFG|SFB1194|TP C04 Andrieu-Bruns
Hinterlegungsdatum: 22 Jul 2022 12:45
Letzte Änderung: 03 Jul 2024 02:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen