TU Darmstadt / ULB / TUbiblio

Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning

Cui, Kai ; Koeppl, Heinz (2022)
Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning.
24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021. Virtual (13.04.2021-15.04.2021)
doi: 10.26083/tuprints-00021511
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The recent mean field game (MFG) formalism facilitates otherwise intractable computation of approximate Nash equilibria in many-agent settings. In this paper, we consider discrete-time finite MFGs subject to finite-horizon objectives. We show that all discrete-time finite MFGs with non-constant fixed point operators fail to be contractive as typically assumed in existing MFG literature, barring convergence via fixed point iteration. Instead, we incorporate entropy-regularization and Boltzmann policies into the fixed point iteration. As a result, we obtain provable convergence to approximate fixed points where existing methods fail, and reach the original goal of approximate Nash equilibria. All proposed methods are evaluated with respect to their exploitability, on both instructive examples with tractable exact solutions and high-dimensional problems where exact methods become intractable. In high-dimensional scenarios, we apply established deep reinforcement learning methods and empirically combine fictitious play with our approximations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Cui, Kai ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Approximately Solving Mean Field Games via Entropy-Regularized Deep Reinforcement Learning
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2021
Verlag: PMLR
Buchtitel: Proceedings of The 24th International Conference on Artificial Intelligence and Statistics
Reihe: Proceedings of Machine Learning Research
Band einer Reihe: 130
Veranstaltungstitel: 24th International Conference on Artificial Intelligence and Statistics (AISTATS) 2021
Veranstaltungsort: Virtual
Veranstaltungsdatum: 13.04.2021-15.04.2021
DOI: 10.26083/tuprints-00021511
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21511
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

The recent mean field game (MFG) formalism facilitates otherwise intractable computation of approximate Nash equilibria in many-agent settings. In this paper, we consider discrete-time finite MFGs subject to finite-horizon objectives. We show that all discrete-time finite MFGs with non-constant fixed point operators fail to be contractive as typically assumed in existing MFG literature, barring convergence via fixed point iteration. Instead, we incorporate entropy-regularization and Boltzmann policies into the fixed point iteration. As a result, we obtain provable convergence to approximate fixed points where existing methods fail, and reach the original goal of approximate Nash equilibria. All proposed methods are evaluated with respect to their exploitability, on both instructive examples with tractable exact solutions and high-dimensional problems where exact methods become intractable. In high-dimensional scenarios, we apply established deep reinforcement learning methods and empirically combine fictitious play with our approximations.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215111
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 510 Mathematik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
TU-Projekte: HMWK|III L6-519/03/05.001-(0016)|emergenCity TP Bock
Hinterlegungsdatum: 20 Jul 2022 13:34
Letzte Änderung: 26 Jul 2022 09:49
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen