Kumar, Sunil ; Lun, Xiao-Kang ; Bodenmiller, Bernd ; Rodríguez Martínez, María ; Koeppl, Heinz (2022)
Stabilized Reconstruction of Signaling Networks from Single-Cell Cue-Response Data.
In: Scientific Reports, 2020, 10 (1)
doi: 10.26083/tuprints-00021513
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Inferring cell-signaling networks from high-throughput data is a challenging problem in systems biology. Recent advances in cytometric technology enable us to measure the abundance of a large number of proteins at the single-cell level across time. Traditional network reconstruction approaches usually consider each time point separately, resulting thus in inferred networks that strongly vary across time. To account for the possibly time-invariant physical couplings within the signaling network, we extend the traditional graphical lasso with an additional regularizer that penalizes network variations over time. ROC evaluation of the method on in silico data showed higher reconstruction accuracy than standard graphical lasso. We also tested our approach on single-cell mass cytometry data of IFNγ-stimulated THP1 cells with 26 phospho-proteins simultaneously measured. Our approach recapitulated known signaling relationships, such as connection within the JAK/STAT pathway, and was further validated in characterizing perturbed signaling network with PI3K, MEK1/2 and AMPK inhibitors.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Kumar, Sunil ; Lun, Xiao-Kang ; Bodenmiller, Bernd ; Rodríguez Martínez, María ; Koeppl, Heinz |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Stabilized Reconstruction of Signaling Networks from Single-Cell Cue-Response Data |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2020 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Scientific Reports |
Jahrgang/Volume einer Zeitschrift: | 10 |
(Heft-)Nummer: | 1 |
Kollation: | 9 Seiten |
DOI: | 10.26083/tuprints-00021513 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21513 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichungsservice |
Kurzbeschreibung (Abstract): | Inferring cell-signaling networks from high-throughput data is a challenging problem in systems biology. Recent advances in cytometric technology enable us to measure the abundance of a large number of proteins at the single-cell level across time. Traditional network reconstruction approaches usually consider each time point separately, resulting thus in inferred networks that strongly vary across time. To account for the possibly time-invariant physical couplings within the signaling network, we extend the traditional graphical lasso with an additional regularizer that penalizes network variations over time. ROC evaluation of the method on in silico data showed higher reconstruction accuracy than standard graphical lasso. We also tested our approach on single-cell mass cytometry data of IFNγ-stimulated THP1 cells with 26 phospho-proteins simultaneously measured. Our approach recapitulated known signaling relationships, such as connection within the JAK/STAT pathway, and was further validated in characterizing perturbed signaling network with PI3K, MEK1/2 and AMPK inhibitors. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-215133 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik 500 Naturwissenschaften und Mathematik > 510 Mathematik 600 Technik, Medizin, angewandte Wissenschaften > 660 Technische Chemie |
Fachbereich(e)/-gebiet(e): | 18 Fachbereich Elektrotechnik und Informationstechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme 18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik 18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab |
Hinterlegungsdatum: | 20 Jul 2022 13:39 |
Letzte Änderung: | 14 Jan 2024 12:24 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Stabilized Reconstruction of Signaling Networks from Single-Cell Cue-Response Data. (deposited 20 Jul 2022 13:39) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |