TU Darmstadt / ULB / TUbiblio

Attention-Based Transformers for Instance Segmentation of Cells in Microstructures

Prangemeier, Tim ; Reich, Christoph ; Koeppl, Heinz (2022)
Attention-Based Transformers for Instance Segmentation of Cells in Microstructures.
IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2020). virtual Conference (16.12.2020-19.12.2020)
doi: 10.26083/tuprints-00021666
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Detecting and segmenting object instances is a common task in biomedical applications. Examples range from detecting lesions on functional magnetic resonance images, to the detection of tumours in histopathological images and extracting quantitative single-cell information from microscopy imagery, where cell segmentation is a major bottleneck. Attention-based transformers are state-of-the-art in a range of deep learning fields. They have recently been proposed for segmentation tasks where they are beginning to outperform other methods. We present a novel attention-based cell detection transformer (CellDETR) for direct end-to-end instance segmentation. While the segmentation performance is on par with a state-of-the-art instance segmentation method, Cell-DETR is simpler and faster. We showcase the method's contribution in a the typical use case of segmenting yeast in microstructured environments, commonly employed in systems or synthetic biology. For the specific use case, the proposed method surpasses the state-of-the-art tools for semantic segmentation and additionally predicts the individual object instances. The fast and accurate instance segmentation performance increases the experimental information yield for a posteriori data processing and makes online monitoring of experiments and closed-loop optimal experimental design feasible. Code and data sample is available at https://git.rwth-aachen.de/ bcs/projects/cell-detr.git.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Prangemeier, Tim ; Reich, Christoph ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Attention-Based Transformers for Instance Segmentation of Cells in Microstructures
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: IEEE
Buchtitel: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
Kollation: 8 Seiten
Veranstaltungstitel: IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2020)
Veranstaltungsort: virtual Conference
Veranstaltungsdatum: 16.12.2020-19.12.2020
DOI: 10.26083/tuprints-00021666
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21666
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Detecting and segmenting object instances is a common task in biomedical applications. Examples range from detecting lesions on functional magnetic resonance images, to the detection of tumours in histopathological images and extracting quantitative single-cell information from microscopy imagery, where cell segmentation is a major bottleneck. Attention-based transformers are state-of-the-art in a range of deep learning fields. They have recently been proposed for segmentation tasks where they are beginning to outperform other methods. We present a novel attention-based cell detection transformer (CellDETR) for direct end-to-end instance segmentation. While the segmentation performance is on par with a state-of-the-art instance segmentation method, Cell-DETR is simpler and faster. We showcase the method's contribution in a the typical use case of segmenting yeast in microstructured environments, commonly employed in systems or synthetic biology. For the specific use case, the proposed method surpasses the state-of-the-art tools for semantic segmentation and additionally predicts the individual object instances. The fast and accurate instance segmentation performance increases the experimental information yield for a posteriori data processing and makes online monitoring of experiments and closed-loop optimal experimental design feasible. Code and data sample is available at https://git.rwth-aachen.de/ bcs/projects/cell-detr.git.

Freie Schlagworte: attention, instance segmentation, transformers, single-cell analysis, synthetic biology, microfluidics, deep learning
Status: Postprint
URN: urn:nbn:de:tuda-tuprints-216661
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 20 Jul 2022 14:50
Letzte Änderung: 26 Jul 2022 08:21
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen