TU Darmstadt / ULB / TUbiblio

Generalized Cost-Based Job Scheduling in Very Large Heterogeneous Cluster Systems

Khuda Bukhsh, Wasiur R. ; Kar, Sounak ; Alt, Bastian ; Rizk, Amr ; Koeppl, Heinz (2022)
Generalized Cost-Based Job Scheduling in Very Large Heterogeneous Cluster Systems.
In: IEEE Transactions on Parallel and Distributed Systems, 2020, 31 (11)
doi: 10.26083/tuprints-00021667
Artikel, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We study job assignment in large, heterogeneous resource-sharing clusters of servers with finite buffers. This load balancing problem arises naturally in today's communication and big data systems, such as Amazon Web Services, Network Service Function Chains, and Stream Processing. Arriving jobs are dispatched to a server, following a load balancing policy that optimizes a performance criterion such as job completion time. Our contribution is a randomized Cost-Based Scheduling (CBS) policy in which the job assignment is driven by general cost functions of the server queue lengths. Beyond existing schemes, such as the Join the Shortest Queue (JSQ), the power of d or the SQ(d) and the capacity-weighted JSQ, the notion of CBS yields new application-specific policies such as hybrid locally uniform JSQ. As today's data center clusters have thousands of servers, exact analysis of CBS policies is tedious. In this article, we derive a scaling limit when the number of servers grows large, facilitating a comparison of various CBS policies with respect to their transient as well as steady state behavior. A byproduct of our derivations is the relationship between the queue filling proportions and the server buffer sizes, which cannot be obtained from infinite buffer models. Finally, we provide extensive numerical evaluations and discuss several applications including multi-stage systems.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Khuda Bukhsh, Wasiur R. ; Kar, Sounak ; Alt, Bastian ; Rizk, Amr ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Generalized Cost-Based Job Scheduling in Very Large Heterogeneous Cluster Systems
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: IEEE
Titel der Zeitschrift, Zeitung oder Schriftenreihe: IEEE Transactions on Parallel and Distributed Systems
Jahrgang/Volume einer Zeitschrift: 31
(Heft-)Nummer: 11
Kollation: 14 Seiten
DOI: 10.26083/tuprints-00021667
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21667
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We study job assignment in large, heterogeneous resource-sharing clusters of servers with finite buffers. This load balancing problem arises naturally in today's communication and big data systems, such as Amazon Web Services, Network Service Function Chains, and Stream Processing. Arriving jobs are dispatched to a server, following a load balancing policy that optimizes a performance criterion such as job completion time. Our contribution is a randomized Cost-Based Scheduling (CBS) policy in which the job assignment is driven by general cost functions of the server queue lengths. Beyond existing schemes, such as the Join the Shortest Queue (JSQ), the power of d or the SQ(d) and the capacity-weighted JSQ, the notion of CBS yields new application-specific policies such as hybrid locally uniform JSQ. As today's data center clusters have thousands of servers, exact analysis of CBS policies is tedious. In this article, we derive a scaling limit when the number of servers grows large, facilitating a comparison of various CBS policies with respect to their transient as well as steady state behavior. A byproduct of our derivations is the relationship between the queue filling proportions and the server buffer sizes, which cannot be obtained from infinite buffer models. Finally, we provide extensive numerical evaluations and discuss several applications including multi-stage systems.

Freie Schlagworte: Job Scheduling, performance evaluation, mean-field limit
Status: Postprint
URN: urn:nbn:de:tuda-tuprints-216679
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 530 Physik
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 20 Jul 2022 14:03
Letzte Änderung: 21 Jul 2022 13:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen