TU Darmstadt / ULB / TUbiblio

The Hawkes Edge Partition Model for Continuous-time Event-based Temporal Networks

Yang, Sikun ; Koeppl, Heinz (2022)
The Hawkes Edge Partition Model for Continuous-time Event-based Temporal Networks.
Conference on Uncertainty in Artificial Intelligence (UAI). Online (03.08.2020-06.08.2020)
doi: 10.26083/tuprints-00021515
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We propose a novel probabilistic framework to model continuously generated interaction events data. Our goal is to infer the \emphimplicit community structure underlying the temporal interactions among entities, and also to exploit how the latent structure influence their interaction dynamics. To this end, we model the reciprocating interactions between individuals using mutually-exciting Hawkes processes. The base rate of the Hawkes process for each pair of individuals is built upon the latent representations inferred using the hierarchical gamma process edge partition model (HGaP-EPM). In particular, our model allows the interaction dynamics between each pair of individuals to be modulated by their respective affiliated communities.Moreover, our model can flexibly incorporate the auxiliary individuals’ attributes, or covariates associated with interaction events. Efficient Gibbs sampling and Expectation-Maximization algorithms are developed to perform inference via Pólya-Gamma data augmentation strategy. Experimental results on real-world datasets demonstrate that our model not only achieves competitive performance compared with state-of-the-art methods, but also discovers interpretable latent structure behind the observed temporal interactions.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Yang, Sikun ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: The Hawkes Edge Partition Model for Continuous-time Event-based Temporal Networks
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: PMLR
Buchtitel: Proceedings of the 36th Conference on Uncertainty in Artificial Intelligence (UAI)
Reihe: Proceedings of Machine Learning Research
Band einer Reihe: 124
Veranstaltungstitel: Conference on Uncertainty in Artificial Intelligence (UAI)
Veranstaltungsort: Online
Veranstaltungsdatum: 03.08.2020-06.08.2020
DOI: 10.26083/tuprints-00021515
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21515
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We propose a novel probabilistic framework to model continuously generated interaction events data. Our goal is to infer the \emphimplicit community structure underlying the temporal interactions among entities, and also to exploit how the latent structure influence their interaction dynamics. To this end, we model the reciprocating interactions between individuals using mutually-exciting Hawkes processes. The base rate of the Hawkes process for each pair of individuals is built upon the latent representations inferred using the hierarchical gamma process edge partition model (HGaP-EPM). In particular, our model allows the interaction dynamics between each pair of individuals to be modulated by their respective affiliated communities.Moreover, our model can flexibly incorporate the auxiliary individuals’ attributes, or covariates associated with interaction events. Efficient Gibbs sampling and Expectation-Maximization algorithms are developed to perform inference via Pólya-Gamma data augmentation strategy. Experimental results on real-world datasets demonstrate that our model not only achieves competitive performance compared with state-of-the-art methods, but also discovers interpretable latent structure behind the observed temporal interactions.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215150
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 20 Jul 2022 13:41
Letzte Änderung: 21 Jul 2022 13:30
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen