TU Darmstadt / ULB / TUbiblio

Solitary states in the mean-field limit

Kruk, Nikita ; Maistrenko, Yuriy ; Koeppl, Heinz (2022)
Solitary states in the mean-field limit.
In: Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30 (11)
doi: 10.26083/tuprints-00021568
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second-order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second-order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite-size models.

Self-organization in large collectives of interacting particles is a fascinating phenomenon that is not completely understood. We study how spatially homogeneous particle ensembles behave subject to second-order rules of motion. Spatial homogeneity allows us to simplify the description of particle dynamics to that of their orientations only. This leads us to the Kuramoto model with inertia and allows us to regard particles as network oscillators, for which solitary states that naturally arise in systems of coupled pendula and power grids have recently been discovered. The goal of this study is to analyze the appearance of solitary states from the point of view of the active matter theory, particularly in the mean-field limit and under the influence of noise.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Kruk, Nikita ; Maistrenko, Yuriy ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Solitary states in the mean-field limit
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: AIP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Chaos: An Interdisciplinary Journal of Nonlinear Science
Jahrgang/Volume einer Zeitschrift: 30
(Heft-)Nummer: 11
Kollation: 9 Seiten
DOI: 10.26083/tuprints-00021568
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21568
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

We study active matter systems where the orientational dynamics of underlying self-propelled particles obey second-order equations. By primarily concentrating on a spatially homogeneous setup for particle distribution, our analysis combines theories of active matter and oscillatory networks. For such systems, we analyze the appearance of solitary states via a homoclinic bifurcation as a mechanism of the frequency clustering. By introducing noise, we establish a stochastic version of solitary states and derive the mean-field limit described by a partial differential equation for a one-particle probability density function, which one might call the continuum Kuramoto model with inertia and noise. By studying this limit, we establish second-order phase transitions between polar order and disorder. The combination of both analytical and numerical approaches in our study demonstrates an excellent qualitative agreement between mean-field and finite-size models.

Self-organization in large collectives of interacting particles is a fascinating phenomenon that is not completely understood. We study how spatially homogeneous particle ensembles behave subject to second-order rules of motion. Spatial homogeneity allows us to simplify the description of particle dynamics to that of their orientations only. This leads us to the Kuramoto model with inertia and allows us to regard particles as network oscillators, for which solitary states that naturally arise in systems of coupled pendula and power grids have recently been discovered. The goal of this study is to analyze the appearance of solitary states from the point of view of the active matter theory, particularly in the mean-field limit and under the influence of noise.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215681
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 530 Physik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 20 Jul 2022 13:56
Letzte Änderung: 26 Jul 2022 08:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen