TU Darmstadt / ULB / TUbiblio

Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning

Prangemeier, Tim ; Wildner, Christian ; Françani, André O. ; Reich, Christoph ; Koeppl, Heinz (2022)
Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning.
IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (IEEE CIBCB). Online (27.10.2020-29.10.2020)
doi: 10.26083/tuprints-00021524
Konferenzveröffentlichung, Zweitveröffentlichung, Postprint

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Prangemeier, Tim ; Wildner, Christian ; Françani, André O. ; Reich, Christoph ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Multiclass Yeast Segmentation in Microstructured Environments with Deep Learning
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: IEEE
Buchtitel: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)
Kollation: 8 Seiten
Veranstaltungstitel: IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (IEEE CIBCB)
Veranstaltungsort: Online
Veranstaltungsdatum: 27.10.2020-29.10.2020
DOI: 10.26083/tuprints-00021524
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21524
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Cell segmentation is a major bottleneck in extracting quantitative single-cell information from microscopy data. The challenge is exasperated in the setting of microstructured environments. While deep learning approaches have proven useful for general cell segmentation tasks, existing segmentation tools for the yeast-microstructure setting rely on traditional machine learning approaches. Here we present convolutional neural networks trained for multiclass segmenting of individual yeast cells and discerning these from cell-similar microstructures. We give an overview of the datasets recorded for training, validating and testing the networks, as well as a typical use-case. We showcase the method's contribution to segmenting yeast in microstructured environments with a typical synthetic biology application in mind. The models achieve robust segmentation results, outperforming the previous state-of-the-art in both accuracy and speed. The combination of fast and accurate segmentation is not only beneficial for a posteriori data processing, it also makes online monitoring of thousands of trapped cells or closed-loop optimal experimental design feasible from an image processing perspective.

Status: Postprint
URN: urn:nbn:de:tuda-tuprints-215242
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
500 Naturwissenschaften und Mathematik > 570 Biowissenschaften, Biologie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Interdisziplinäre Forschungsprojekte
Interdisziplinäre Forschungsprojekte > Centre for Synthetic Biology
Hinterlegungsdatum: 20 Jul 2022 13:50
Letzte Änderung: 26 Jul 2022 08:14
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen