TU Darmstadt / ULB / TUbiblio

Continuous Time Bayesian Networks with Clocks

Engelmann, Nicolai ; Linzner, Dominik ; Koeppl, Heinz (2022)
Continuous Time Bayesian Networks with Clocks.
37th International Conference on Machine Learning. Online (12.07.2020-18.07.2020)
doi: 10.26083/tuprints-00021516
Konferenzveröffentlichung, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Structured stochastic processes evolving in continuous time present a widely adopted framework to model phenomena occurring in nature and engineering. However, such models are often chosen to satisfy the Markov property to maintain tractability. One of the more popular of such memoryless models are Continuous Time Bayesian Networks (CTBNs). In this work, we lift its restriction to exponential survival times to arbitrary distributions. Current extensions achieve this via auxiliary states, which hinder tractability. To avoid that, we introduce a set of node-wise clocks to construct a collection of graph-coupled semi-Markov chains. We provide algorithms for parameter and structure inference, which make use of local dependencies and conduct experiments on synthetic data and a data-set generated through a benchmark tool for gene regulatory networks. In doing so, we point out advantages compared to current CTBN extensions.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Engelmann, Nicolai ; Linzner, Dominik ; Koeppl, Heinz
Art des Eintrags: Zweitveröffentlichung
Titel: Continuous Time Bayesian Networks with Clocks
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2020
Verlag: PMLR
Buchtitel: Proceedings of the 37th International Conference on Machine Learning
Reihe: Proceedings of Machine Learning Research
Band einer Reihe: 119
Veranstaltungstitel: 37th International Conference on Machine Learning
Veranstaltungsort: Online
Veranstaltungsdatum: 12.07.2020-18.07.2020
DOI: 10.26083/tuprints-00021516
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21516
Zugehörige Links:
Herkunft: Zweitveröffentlichungsservice
Kurzbeschreibung (Abstract):

Structured stochastic processes evolving in continuous time present a widely adopted framework to model phenomena occurring in nature and engineering. However, such models are often chosen to satisfy the Markov property to maintain tractability. One of the more popular of such memoryless models are Continuous Time Bayesian Networks (CTBNs). In this work, we lift its restriction to exponential survival times to arbitrary distributions. Current extensions achieve this via auxiliary states, which hinder tractability. To avoid that, we introduce a set of node-wise clocks to construct a collection of graph-coupled semi-Markov chains. We provide algorithms for parameter and structure inference, which make use of local dependencies and conduct experiments on synthetic data and a data-set generated through a benchmark tool for gene regulatory networks. In doing so, we point out advantages compared to current CTBN extensions.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215165
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 18 Fachbereich Elektrotechnik und Informationstechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik > Bioinspirierte Kommunikationssysteme
18 Fachbereich Elektrotechnik und Informationstechnik > Institut für Nachrichtentechnik
18 Fachbereich Elektrotechnik und Informationstechnik > Self-Organizing Systems Lab
Hinterlegungsdatum: 20 Jul 2022 13:43
Letzte Änderung: 21 Jul 2022 13:28
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen