TU Darmstadt / ULB / TUbiblio

Automatic Loop Invariant Generation for Data Dependence Analysis

Tabar, Asmae Heydari ; Bubel, Richard ; Hähnle, Reiner (2022)
Automatic Loop Invariant Generation for Data Dependence Analysis.
10th IEEE/ACM International Conference on Formal Methods in Software Engineering. Pittsburgh (22.05.2022-22.05.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Parallelization of programs relies on sound and precise analysis of data dependences in the code, specifically, when dealing with loops. State-of-art tools are based on dynamic profiling and static analysis. They tend to over- and, occasionally, to under-approximate dependences. The former misses parallelization opportunities, the latter can change the behavior of the parallelized program. In this paper we present a sound and highly precise approach to generate data dependences based on deductive verification. The central technique is to infer a specific form of loop invariant tailored to express dependences. To achieve full automation, we adapt predicate abstraction in a suitable manner. To retain as much precision as possible, we generalized logic-based symbolic execution to compute abstract dependence predicates. We implemented our approach for Java on top of a deductive verification tool. The evaluation shows that our approach can generate highly precise data dependences for representative code taken from HPC applications.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Tabar, Asmae Heydari ; Bubel, Richard ; Hähnle, Reiner
Art des Eintrags: Bibliographie
Titel: Automatic Loop Invariant Generation for Data Dependence Analysis
Sprache: Englisch
Publikationsjahr: 20 Juni 2022
Verlag: IEEE
Buchtitel: Proceedings: IEEE/ACM 10th International Conference on Formal Methods in Software Engineering: FormaliSE 2022
Veranstaltungstitel: 10th IEEE/ACM International Conference on Formal Methods in Software Engineering
Veranstaltungsort: Pittsburgh
Veranstaltungsdatum: 22.05.2022-22.05.2022
URL / URN: https://ieeexplore.ieee.org/document/9796460
Kurzbeschreibung (Abstract):

Parallelization of programs relies on sound and precise analysis of data dependences in the code, specifically, when dealing with loops. State-of-art tools are based on dynamic profiling and static analysis. They tend to over- and, occasionally, to under-approximate dependences. The former misses parallelization opportunities, the latter can change the behavior of the parallelized program. In this paper we present a sound and highly precise approach to generate data dependences based on deductive verification. The central technique is to infer a specific form of loop invariant tailored to express dependences. To achieve full automation, we adapt predicate abstraction in a suitable manner. To retain as much precision as possible, we generalized logic-based symbolic execution to compute abstract dependence predicates. We implemented our approach for Java on top of a deductive verification tool. The evaluation shows that our approach can generate highly precise data dependences for representative code taken from HPC applications.

Zusätzliche Informationen:

co-located with ICSE 2022, the 44th International Conference on Software Engineering

Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Software Engineering
Hinterlegungsdatum: 20 Jul 2022 07:17
Letzte Änderung: 20 Jul 2022 07:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen