TU Darmstadt / ULB / TUbiblio

Light propagation and atom interferometry in gravity and dilaton fields

Di Pumpo, Fabio ; Friedrich, Alexander ; Geyer, Andreas ; Ufrecht, Christian ; Giese, Enno (2022)
Light propagation and atom interferometry in gravity and dilaton fields.
In: Physical Review D, 105 (8)
doi: 10.1103/PhysRevD.105.084065
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Dark matter or violations of the Einstein equivalence principle influence the motion of atoms, their internal states as well as electromagnetic fields, thus causing a signature in the signal of atomic detectors. To model such new physics, we introduce dilaton fields and study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers. Their interference signal is dominated by the matter’s coupling to gravity and the dilaton. Even though the electromagnetic field contributes to the phase, no additional dilaton-dependent effect can be observed. However, the light’s propagation in gravity enters via a modified momentum transfer and its finite speed. For illustration, we discuss effects from light propagation and the dilaton on different atom-interferometric setups, including gradiometers, equivalence principle tests, and dark matter detection.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Di Pumpo, Fabio ; Friedrich, Alexander ; Geyer, Andreas ; Ufrecht, Christian ; Giese, Enno
Art des Eintrags: Bibliographie
Titel: Light propagation and atom interferometry in gravity and dilaton fields
Sprache: Englisch
Publikationsjahr: 15 April 2022
Verlag: APS Physics
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Physical Review D
Jahrgang/Volume einer Zeitschrift: 105
(Heft-)Nummer: 8
Kollation: 11 Seiten
DOI: 10.1103/PhysRevD.105.084065
URL / URN: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.0...
Zugehörige Links:
Kurzbeschreibung (Abstract):

Dark matter or violations of the Einstein equivalence principle influence the motion of atoms, their internal states as well as electromagnetic fields, thus causing a signature in the signal of atomic detectors. To model such new physics, we introduce dilaton fields and study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers. Their interference signal is dominated by the matter’s coupling to gravity and the dilaton. Even though the electromagnetic field contributes to the phase, no additional dilaton-dependent effect can be observed. However, the light’s propagation in gravity enters via a modified momentum transfer and its finite speed. For illustration, we discuss effects from light propagation and the dilaton on different atom-interferometric setups, including gradiometers, equivalence principle tests, and dark matter detection.

ID-Nummer: Artikel-ID: 084065
Zusätzliche Informationen:

Erstveröffentlichung

Fachbereich(e)/-gebiet(e): 05 Fachbereich Physik
05 Fachbereich Physik > Institut für Angewandte Physik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenoptik
05 Fachbereich Physik > Institut für Angewandte Physik > Theoretische Quantenphysik
Hinterlegungsdatum: 18 Jul 2022 09:19
Letzte Änderung: 09 Aug 2024 13:18
PPN: 502234970
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen