Matchanov, Alimjon D. ; Esanov, Rakhmat S. ; Renkawitz, Tobias ; Soliev, Azamjon B. ; Kunisch, Elke ; Gonzalo de Juan, Isabel ; Westhauser, Fabian ; Tulyaganov, Dilshat U. (2022)
Synthesis, Structure–Property Evaluation and Biological Assessment of Supramolecular Assemblies of Bioactive Glass with Glycyrrhizic Acid and Its Monoammonium Salt.
In: Materials, 2022, 15 (12)
doi: 10.26083/tuprints-00021636
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Medical nutrients obtained from plants have been used in traditional medicine since ancient times, owning to the protective and therapeutic properties of plant extracts and products. Glycyrrhizic acid is one of those that, apart from its therapeutic effect, may contribute to stronger bones, inhibiting bone resorption and improving the bone structure and biomechanical strength. In the present study, we investigated the effect of a bioactive glass (BG) addition to the structure–property relationships of supramolecular assemblies formed by glycyrrhizic acid (GA) and its monoammonium salt (MSGA). FTIR spectra of supramolecular assemblies evidenced an interaction between BG components and hydroxyl groups of MSGA and GA. Moreover, it was revealed that BG components may interact and bond to the carboxyl groups of MSGA. In order to assess their biological effects, BG, MSGA, and their supramolecular assemblies were introduced to a culture of human bone-marrow-derived mesenchymal stromal cells (BMSCs). Both the BG and MSGA had positive influence on BMSC growth, viability, and osteogenic differentiation—these positive effects were most pronounced when BG1d-BG and MSGA were introduced together into cell culture in the form of MSGA:BG assemblies. In conclusion, MSGA:BG assemblies revealed a promising potential as a candidate material intended for application in bone defect reconstruction and bone tissue engineering approaches.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Matchanov, Alimjon D. ; Esanov, Rakhmat S. ; Renkawitz, Tobias ; Soliev, Azamjon B. ; Kunisch, Elke ; Gonzalo de Juan, Isabel ; Westhauser, Fabian ; Tulyaganov, Dilshat U. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | Synthesis, Structure–Property Evaluation and Biological Assessment of Supramolecular Assemblies of Bioactive Glass with Glycyrrhizic Acid and Its Monoammonium Salt |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | MDPI |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Materials |
Jahrgang/Volume einer Zeitschrift: | 15 |
(Heft-)Nummer: | 12 |
Kollation: | 13 Seiten |
DOI: | 10.26083/tuprints-00021636 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21636 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung DeepGreen |
Kurzbeschreibung (Abstract): | Medical nutrients obtained from plants have been used in traditional medicine since ancient times, owning to the protective and therapeutic properties of plant extracts and products. Glycyrrhizic acid is one of those that, apart from its therapeutic effect, may contribute to stronger bones, inhibiting bone resorption and improving the bone structure and biomechanical strength. In the present study, we investigated the effect of a bioactive glass (BG) addition to the structure–property relationships of supramolecular assemblies formed by glycyrrhizic acid (GA) and its monoammonium salt (MSGA). FTIR spectra of supramolecular assemblies evidenced an interaction between BG components and hydroxyl groups of MSGA and GA. Moreover, it was revealed that BG components may interact and bond to the carboxyl groups of MSGA. In order to assess their biological effects, BG, MSGA, and their supramolecular assemblies were introduced to a culture of human bone-marrow-derived mesenchymal stromal cells (BMSCs). Both the BG and MSGA had positive influence on BMSC growth, viability, and osteogenic differentiation—these positive effects were most pronounced when BG1d-BG and MSGA were introduced together into cell culture in the form of MSGA:BG assemblies. In conclusion, MSGA:BG assemblies revealed a promising potential as a candidate material intended for application in bone defect reconstruction and bone tissue engineering approaches. |
Freie Schlagworte: | bioactive glasses, glycyrrhizic acid, supramolecular assemblies, bone tissue engineering |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-216368 |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Disperse Feststoffe |
Hinterlegungsdatum: | 11 Jul 2022 13:27 |
Letzte Änderung: | 12 Jul 2022 05:13 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- Synthesis, Structure–Property Evaluation and Biological Assessment of Supramolecular Assemblies of Bioactive Glass with Glycyrrhizic Acid and Its Monoammonium Salt. (deposited 11 Jul 2022 13:27) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |