Yaylali, Can (2022)
Derived F-zips.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00021626
Dissertation, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
We define derived versions of F-zips and associate a derived F-zip to any proper, smooth morphism of schemes in positive characteristic. We analyze the stack of derived F -zips and certain substacks. We make a connection to the classical theory and look at problems that arise when trying to generalize the theory to derived G-zips and derived F-zips associated to lci morphisms. As an application, we look at Enriques-surfaces and analyze the geometry of the moduli stack of Enriques-surfaces via the associated derived F -zips. As there are Enriques-surfaces in characteristic 2 with non-degenerate Hodge-de Rham spectral sequence, this gives a new approach, which could previously not be obtained by the classical theory of F-zips. For this we also recall important aspects of derived algebraic geometry and the proof that the derived stack of perfect complexes is locally geometric, using the results of Antieau-Gepner and Toën-Vaquié.
Typ des Eintrags: | Dissertation | ||||
---|---|---|---|---|---|
Erschienen: | 2022 | ||||
Autor(en): | Yaylali, Can | ||||
Art des Eintrags: | Erstveröffentlichung | ||||
Titel: | Derived F-zips | ||||
Sprache: | Englisch | ||||
Referenten: | Wedhorn, Prof. Dr. Torsten ; Richarz, Prof. Dr. Timo | ||||
Publikationsjahr: | 2022 | ||||
Ort: | Darmstadt | ||||
Kollation: | 145 Seiten | ||||
Datum der mündlichen Prüfung: | 11 Mai 2022 | ||||
DOI: | 10.26083/tuprints-00021626 | ||||
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21626 | ||||
Kurzbeschreibung (Abstract): | We define derived versions of F-zips and associate a derived F-zip to any proper, smooth morphism of schemes in positive characteristic. We analyze the stack of derived F -zips and certain substacks. We make a connection to the classical theory and look at problems that arise when trying to generalize the theory to derived G-zips and derived F-zips associated to lci morphisms. As an application, we look at Enriques-surfaces and analyze the geometry of the moduli stack of Enriques-surfaces via the associated derived F -zips. As there are Enriques-surfaces in characteristic 2 with non-degenerate Hodge-de Rham spectral sequence, this gives a new approach, which could previously not be obtained by the classical theory of F-zips. For this we also recall important aspects of derived algebraic geometry and the proof that the derived stack of perfect complexes is locally geometric, using the results of Antieau-Gepner and Toën-Vaquié. |
||||
Alternatives oder übersetztes Abstract: |
|
||||
Status: | Verlagsversion | ||||
URN: | urn:nbn:de:tuda-tuprints-216260 | ||||
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik | ||||
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Algebra 04 Fachbereich Mathematik > Algebra > Arithmetische algebraische Geometrie |
||||
Hinterlegungsdatum: | 11 Jul 2022 12:20 | ||||
Letzte Änderung: | 18 Jul 2022 08:58 | ||||
PPN: | |||||
Referenten: | Wedhorn, Prof. Dr. Torsten ; Richarz, Prof. Dr. Timo | ||||
Datum der mündlichen Prüfung / Verteidigung / mdl. Prüfung: | 11 Mai 2022 | ||||
Export: | |||||
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |