TU Darmstadt / ULB / TUbiblio

Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition

Hossain, Umme Habiba ; Jantsen, Gennadi ; Muench, Falk ; Kunz, Ulrike ; Ensinger, Wolfgang (2022)
Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition.
In: Nanotechnology, 2022, 33 (24)
doi: 10.26083/tuprints-00021120
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Ion-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well understood, its potential for creating structurally and compositionally complex nano-architectures is far from being fully tapped. In this study, we showcase different strategies to expand the synthetic repertoire of ion-track membrane templating by creating several new 1D nanostructures, namely metal nanotubes of elliptical cross-section, funnel-shaped nanotubes optionally overcoated with titania or nickel nanospike layers, and concentrical as well as stacked metal nanotube-nanowire heterostructures. These nano-architectures are obtained solely by applying different wet-chemical deposition methods (electroless plating, electrodeposition, and chemical bath deposition) to ion-track etched polycarbonate templates, whose pore geometry is modified through plastic deformation, consecutive etching steps under differing conditions, and etching steps intermitted by spatially confined deposition, providing new motifs for nanoscale replication.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Hossain, Umme Habiba ; Jantsen, Gennadi ; Muench, Falk ; Kunz, Ulrike ; Ensinger, Wolfgang
Art des Eintrags: Zweitveröffentlichung
Titel: Increasing the structural and compositional diversity of ion-track templated 1D nanostructures through multistep etching, plastic deformation, and deposition
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: IOP Publishing
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Nanotechnology
Jahrgang/Volume einer Zeitschrift: 33
(Heft-)Nummer: 24
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00021120
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21120
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Ion-track etching represents a highly versatile way of introducing artificial pores with diameters down into the nm-regime into polymers, which offers considerable synthetic flexibility in template-assisted nanofabrication schemes. While the mechanistic foundations of ion-track technology are well understood, its potential for creating structurally and compositionally complex nano-architectures is far from being fully tapped. In this study, we showcase different strategies to expand the synthetic repertoire of ion-track membrane templating by creating several new 1D nanostructures, namely metal nanotubes of elliptical cross-section, funnel-shaped nanotubes optionally overcoated with titania or nickel nanospike layers, and concentrical as well as stacked metal nanotube-nanowire heterostructures. These nano-architectures are obtained solely by applying different wet-chemical deposition methods (electroless plating, electrodeposition, and chemical bath deposition) to ion-track etched polycarbonate templates, whose pore geometry is modified through plastic deformation, consecutive etching steps under differing conditions, and etching steps intermitted by spatially confined deposition, providing new motifs for nanoscale replication.

Freie Schlagworte: 1D nanomaterials, ion-track membranes, electroless plating, electrodeposition, template-assisted synthesis
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-211209
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialanalytik
Hinterlegungsdatum: 08 Jul 2022 11:20
Letzte Änderung: 11 Jul 2022 06:22
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen