Bernstein, Aaron ; Däubel, Karl ; Disser, Yann ; Klimm, Max ; Mütze, Torsten ; Smolny, Frieder (2018)
Distance-preserving graph contractions : [erweitertes Abstract].
9th Innovations in Theoretical Computer Science conference (ITCS 2018). Cambridge, USA (11.01.2018-14.01.2018)
doi: 10.4230/LIPIcs.ITCS.2018.51
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
Compression and sparsification algorithms are frequently applied in a preprocessing step before analyzing or optimizing large networks/graphs. In this paper we propose and study a new framework contracting edges of a graph (merging vertices into super-vertices) with the goal of preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph, the contraction should guarantee that for any two vertices at distance d, the corresponding super-vertices remain at distance at least \varphi(d) in the contracted graph, where \varphi is a tolerance function bounding the permitted distance distortion. We present a comprehensive picture of the algorithmic complexity of the contraction problem for affine tolerance functions \varphi(x)=x/\alpha-\beta, where \alpha \geq 1 and \beta \geq 0 are arbitrary real-valued parameters. Specifically, we present polynomial-time algorithms for trees as well as hardness and inapproximability results for different graph classes, precisely separating easy and hard cases. Further we analyze the asymptotic behavior of the size of contractions, and find efficient algorithms to compute (non-optimal) contractions despite our hardness results.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2018 |
Autor(en): | Bernstein, Aaron ; Däubel, Karl ; Disser, Yann ; Klimm, Max ; Mütze, Torsten ; Smolny, Frieder |
Art des Eintrags: | Bibliographie |
Titel: | Distance-preserving graph contractions : [erweitertes Abstract] |
Sprache: | Englisch |
Publikationsjahr: | 12 Januar 2018 |
Ort: | Wadern |
Verlag: | Dagstuhl Publishing |
Buchtitel: | Proceedings of the 9th Innovations in Theoretical Computer Science |
Reihe: | Leibniz International Proceedings in Informatics |
Band einer Reihe: | 94 |
Kollation: | 14 S. |
Veranstaltungstitel: | 9th Innovations in Theoretical Computer Science conference (ITCS 2018) |
Veranstaltungsort: | Cambridge, USA |
Veranstaltungsdatum: | 11.01.2018-14.01.2018 |
DOI: | 10.4230/LIPIcs.ITCS.2018.51 |
URL / URN: | urn:nbn:de:0030-drops-83427 |
Kurzbeschreibung (Abstract): | Compression and sparsification algorithms are frequently applied in a preprocessing step before analyzing or optimizing large networks/graphs. In this paper we propose and study a new framework contracting edges of a graph (merging vertices into super-vertices) with the goal of preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph, the contraction should guarantee that for any two vertices at distance d, the corresponding super-vertices remain at distance at least \varphi(d) in the contracted graph, where \varphi is a tolerance function bounding the permitted distance distortion. We present a comprehensive picture of the algorithmic complexity of the contraction problem for affine tolerance functions \varphi(x)=x/\alpha-\beta, where \alpha \geq 1 and \beta \geq 0 are arbitrary real-valued parameters. Specifically, we present polynomial-time algorithms for trees as well as hardness and inapproximability results for different graph classes, precisely separating easy and hard cases. Further we analyze the asymptotic behavior of the size of contractions, and find efficient algorithms to compute (non-optimal) contractions despite our hardness results. |
Zusätzliche Informationen: | Artikel erschienen in: SIAM Journal on Discrete Mathematics 2019 33:3, 1607-1636 [ID 133258] |
Fachbereich(e)/-gebiet(e): | Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
Hinterlegungsdatum: | 15 Jul 2022 12:08 |
Letzte Änderung: | 10 Jan 2023 08:29 |
PPN: | 503318000 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |