TU Darmstadt / ULB / TUbiblio

Distance-preserving graph contractions : [erweitertes Abstract]

Bernstein, Aaron ; Däubel, Karl ; Disser, Yann ; Klimm, Max ; Mütze, Torsten ; Smolny, Frieder (2018)
Distance-preserving graph contractions : [erweitertes Abstract].
9th Innovations in Theoretical Computer Science conference (ITCS 2018). Cambridge, USA (11.01.2018-14.01.2018)
doi: 10.4230/LIPIcs.ITCS.2018.51
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Compression and sparsification algorithms are frequently applied in a preprocessing step before analyzing or optimizing large networks/graphs. In this paper we propose and study a new framework contracting edges of a graph (merging vertices into super-vertices) with the goal of preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph, the contraction should guarantee that for any two vertices at distance d, the corresponding super-vertices remain at distance at least \varphi(d) in the contracted graph, where \varphi is a tolerance function bounding the permitted distance distortion. We present a comprehensive picture of the algorithmic complexity of the contraction problem for affine tolerance functions \varphi(x)=x/\alpha-\beta, where \alpha \geq 1 and \beta \geq 0 are arbitrary real-valued parameters. Specifically, we present polynomial-time algorithms for trees as well as hardness and inapproximability results for different graph classes, precisely separating easy and hard cases. Further we analyze the asymptotic behavior of the size of contractions, and find efficient algorithms to compute (non-optimal) contractions despite our hardness results.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2018
Autor(en): Bernstein, Aaron ; Däubel, Karl ; Disser, Yann ; Klimm, Max ; Mütze, Torsten ; Smolny, Frieder
Art des Eintrags: Bibliographie
Titel: Distance-preserving graph contractions : [erweitertes Abstract]
Sprache: Englisch
Publikationsjahr: 12 Januar 2018
Ort: Wadern
Verlag: Dagstuhl Publishing
Buchtitel: Proceedings of the 9th Innovations in Theoretical Computer Science
Reihe: Leibniz International Proceedings in Informatics
Band einer Reihe: 94
Kollation: 14 S.
Veranstaltungstitel: 9th Innovations in Theoretical Computer Science conference (ITCS 2018)
Veranstaltungsort: Cambridge, USA
Veranstaltungsdatum: 11.01.2018-14.01.2018
DOI: 10.4230/LIPIcs.ITCS.2018.51
URL / URN: urn:nbn:de:0030-drops-83427
Kurzbeschreibung (Abstract):

Compression and sparsification algorithms are frequently applied in a preprocessing step before analyzing or optimizing large networks/graphs. In this paper we propose and study a new framework contracting edges of a graph (merging vertices into super-vertices) with the goal of preserving pairwise distances as accurately as possible. Formally, given an edge-weighted graph, the contraction should guarantee that for any two vertices at distance d, the corresponding super-vertices remain at distance at least \varphi(d) in the contracted graph, where \varphi is a tolerance function bounding the permitted distance distortion. We present a comprehensive picture of the algorithmic complexity of the contraction problem for affine tolerance functions \varphi(x)=x/\alpha-\beta, where \alpha \geq 1 and \beta \geq 0 are arbitrary real-valued parameters. Specifically, we present polynomial-time algorithms for trees as well as hardness and inapproximability results for different graph classes, precisely separating easy and hard cases. Further we analyze the asymptotic behavior of the size of contractions, and find efficient algorithms to compute (non-optimal) contractions despite our hardness results.

Zusätzliche Informationen:

Artikel erschienen in: SIAM Journal on Discrete Mathematics 2019 33:3, 1607-1636 [ID 133258]

Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 15 Jul 2022 12:08
Letzte Änderung: 10 Jan 2023 08:29
PPN: 503318000
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen