Disser, Yann ; Kratsch, Stefan ; Sorge, Manuel (2019)
The Minimum Feasible Tileset Problem.
In: Algorithmica, 81 (3)
doi: 10.1007/s00453-018-0460-3
Artikel, Bibliographie
Kurzbeschreibung (Abstract)
We introduce and study the Minimum Feasible Tileset problem: given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is APX-hard and that it is NP-hard even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2019 |
Autor(en): | Disser, Yann ; Kratsch, Stefan ; Sorge, Manuel |
Art des Eintrags: | Bibliographie |
Titel: | The Minimum Feasible Tileset Problem |
Sprache: | Englisch |
Publikationsjahr: | 15 März 2019 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | Algorithmica |
Jahrgang/Volume einer Zeitschrift: | 81 |
(Heft-)Nummer: | 3 |
DOI: | 10.1007/s00453-018-0460-3 |
Kurzbeschreibung (Abstract): | We introduce and study the Minimum Feasible Tileset problem: given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is APX-hard and that it is NP-hard even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols. |
Fachbereich(e)/-gebiet(e): | Exzellenzinitiative Exzellenzinitiative > Graduiertenschulen Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE) |
Hinterlegungsdatum: | 15 Jul 2022 09:35 |
Letzte Änderung: | 04 Jan 2023 10:28 |
PPN: | 503263370 |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |