TU Darmstadt / ULB / TUbiblio

General Bounds for Incremental Maximization

Bernstein, Aaron ; Disser, Yann ; Groß, Martin ; Himburg, Sandra (2022)
General Bounds for Incremental Maximization.
In: Mathematical Programming, 191 (2)
doi: 10.1007/s10107-020-01576-0
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k∈N that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all k between the incremental solution after k steps and an optimum solution of cardinality k. We consider a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental algorithm for this class of problems, and we show that no algorithm can have competitive ratio below 2.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) d-dimensional matching, maximum (weighted) (b-)matching and a variant of the maximum flow problem. We show a general bound for the competitive ratio of the greedy algorithm on the class of problems that satisfy this relaxed submodularity condition. Our bound generalizes the (tight) bound of 1.58 slightly beyond sub-modular functions and yields a tight bound of 2.313 for maximum (weighted) (b-)matching. Our bound is also tight for a more general class of functions as the relevant parameter goes to infinity. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems, and our bounds for the greedy algorithm carry over both.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Bernstein, Aaron ; Disser, Yann ; Groß, Martin ; Himburg, Sandra
Art des Eintrags: Bibliographie
Titel: General Bounds for Incremental Maximization
Sprache: Englisch
Publikationsjahr: 1 Februar 2022
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Mathematical Programming
Jahrgang/Volume einer Zeitschrift: 191
(Heft-)Nummer: 2
DOI: 10.1007/s10107-020-01576-0
URL / URN: https://link.springer.com/article/10.1007/s10107-020-01576-0
Zugehörige Links:
Kurzbeschreibung (Abstract):

We propose a theoretical framework to capture incremental solutions to cardinality constrained maximization problems. The defining characteristic of our framework is that the cardinality/support of the solution is bounded by a value k∈N that grows over time, and we allow the solution to be extended one element at a time. We investigate the best-possible competitive ratio of such an incremental solution, i.e., the worst ratio over all k between the incremental solution after k steps and an optimum solution of cardinality k. We consider a large class of problems that contains many important cardinality constrained maximization problems like maximum matching, knapsack, and packing/covering problems. We provide a general 2.618-competitive incremental algorithm for this class of problems, and we show that no algorithm can have competitive ratio below 2.18 in general. In the second part of the paper, we focus on the inherently incremental greedy algorithm that increases the objective value as much as possible in each step. This algorithm is known to be 1.58-competitive for submodular objective functions, but it has unbounded competitive ratio for the class of incremental problems mentioned above. We define a relaxed submodularity condition for the objective function, capturing problems like maximum (weighted) d-dimensional matching, maximum (weighted) (b-)matching and a variant of the maximum flow problem. We show a general bound for the competitive ratio of the greedy algorithm on the class of problems that satisfy this relaxed submodularity condition. Our bound generalizes the (tight) bound of 1.58 slightly beyond sub-modular functions and yields a tight bound of 2.313 for maximum (weighted) (b-)matching. Our bound is also tight for a more general class of functions as the relevant parameter goes to infinity. Note that our upper bounds on the competitive ratios translate to approximation ratios for the underlying cardinality constrained problems, and our bounds for the greedy algorithm carry over both.

Fachbereich(e)/-gebiet(e): Exzellenzinitiative
Exzellenzinitiative > Graduiertenschulen
Exzellenzinitiative > Graduiertenschulen > Graduate School of Computational Engineering (CE)
Hinterlegungsdatum: 15 Jul 2022 06:51
Letzte Änderung: 25 Apr 2024 10:19
PPN: 502323779
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen