TU Darmstadt / ULB / TUbiblio

Creating a Ferromagnetic Ground State with Tc Above Room Temperature in a Paramagnetic Alloy through Non‐Equilibrium Nanostructuring

Ye, Xinglong ; Fortunato, Nuno ; Sarkar, Abhishek ; Geßwein, Holger ; Wang, Di ; Chen, Xiang ; Eggert, Benedikt ; Wende, Heiko ; Brand, Richard A. ; Zhang, Hongbin ; Hahn, Horst ; Kruk, Robert (2022)
Creating a Ferromagnetic Ground State with Tc Above Room Temperature in a Paramagnetic Alloy through Non‐Equilibrium Nanostructuring.
In: Advanced Materials, 2022, 34 (11)
doi: 10.26083/tuprints-00021539
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Materials with strong magnetostructural coupling have complex energy landscapes featuring multiple local ground states, thus making it possible to switch among distinct magnetic‐electronic properties. However, these energy minima are rarely accessible by a mere application of an external stimuli to the system in equilibrium state. A ferromagnetic ground state, with Tc above room temperature, can be created in an initially paramagnetic alloy by nonequilibrium nanostructuring. By a dealloying process, bulk chemically disordered FeRh alloys are transformed into a nanoporous structure with the topology of a few nanometer‐sized ligaments and nodes. Magnetometry and Mössbauer spectroscopy reveal the coexistence of two magnetic ground states, a conventional low‐temperature spin‐glass and a hitherto‐unknown robust ferromagnetic phase. The emergence of the ferromagnetic phase is validated by density functional theory calculations showing that local tetragonal distortion induced by surface stress favors ferromagnetic ordering. The study provides a means for reaching conventionally inaccessible magnetic states, resulting in a complete on/off ferromagnetic–paramagnetic switching over a broad temperature range.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Ye, Xinglong ; Fortunato, Nuno ; Sarkar, Abhishek ; Geßwein, Holger ; Wang, Di ; Chen, Xiang ; Eggert, Benedikt ; Wende, Heiko ; Brand, Richard A. ; Zhang, Hongbin ; Hahn, Horst ; Kruk, Robert
Art des Eintrags: Zweitveröffentlichung
Titel: Creating a Ferromagnetic Ground State with Tc Above Room Temperature in a Paramagnetic Alloy through Non‐Equilibrium Nanostructuring
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Wiley-VCH
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Advanced Materials
Jahrgang/Volume einer Zeitschrift: 34
(Heft-)Nummer: 11
Kollation: 11 Seiten
DOI: 10.26083/tuprints-00021539
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21539
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

Materials with strong magnetostructural coupling have complex energy landscapes featuring multiple local ground states, thus making it possible to switch among distinct magnetic‐electronic properties. However, these energy minima are rarely accessible by a mere application of an external stimuli to the system in equilibrium state. A ferromagnetic ground state, with Tc above room temperature, can be created in an initially paramagnetic alloy by nonequilibrium nanostructuring. By a dealloying process, bulk chemically disordered FeRh alloys are transformed into a nanoporous structure with the topology of a few nanometer‐sized ligaments and nodes. Magnetometry and Mössbauer spectroscopy reveal the coexistence of two magnetic ground states, a conventional low‐temperature spin‐glass and a hitherto‐unknown robust ferromagnetic phase. The emergence of the ferromagnetic phase is validated by density functional theory calculations showing that local tetragonal distortion induced by surface stress favors ferromagnetic ordering. The study provides a means for reaching conventionally inaccessible magnetic states, resulting in a complete on/off ferromagnetic–paramagnetic switching over a broad temperature range.

Freie Schlagworte: FeRh alloys, ferromagnetic materials, magnetostructural coupling, multiple ground states, non‐equilibrium nanostructuring, paramagnetic materials
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215396
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 500 Naturwissenschaften und Mathematik > 540 Chemie
600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Gemeinschaftslabor Nanomaterialien
Hinterlegungsdatum: 01 Jul 2022 11:40
Letzte Änderung: 04 Jul 2022 05:17
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen