TU Darmstadt / ULB / TUbiblio

What constitutes a machine-learning-driven business model? A taxonomy of B2B start-ups with machine learning at their core

Vetter, Oliver A. ; Hoffmann, Felix ; Pumplun, Luisa ; Buxmann, Peter (2022)
What constitutes a machine-learning-driven business model? A taxonomy of B2B start-ups with machine learning at their core.
30th European Conference on Information Systems. Timisoara, Romania (18.06.2022-24.06.2022)
Konferenzveröffentlichung, Bibliographie

Kurzbeschreibung (Abstract)

Artificial intelligence, specifically machine learning (ML), technologies are powerfully driving business model innovation in organizations against the backdrop of increasing digitalization. The resulting novel business models are profoundly shaped by ML, a technology that brings about unique opportunities and challenges. However, to date, little research examines what exactly constitutes these business models that use ML at their core and how they can be distinguished. Therefore, this study aims to contribute to an increased understanding of the anatomy of ML-driven business models in the business-to-business segment. To this end, we develop a taxonomy that allows researchers and practitioners to differentiate these ML-driven business models according to their characteristics along ten dimensions. Additionally, we derive archetypes of ML-driven business models through a cluster analysis based on the characteristics of 102 start-ups from the database Crunchbase. Our results are cross-industry, providing fertile soil for expansion through future investigations.

Typ des Eintrags: Konferenzveröffentlichung
Erschienen: 2022
Autor(en): Vetter, Oliver A. ; Hoffmann, Felix ; Pumplun, Luisa ; Buxmann, Peter
Art des Eintrags: Bibliographie
Titel: What constitutes a machine-learning-driven business model? A taxonomy of B2B start-ups with machine learning at their core
Sprache: Englisch
Publikationsjahr: Juni 2022
Ort: Timisoara, Romania
Buchtitel: ECIS 2022 Research Papers
Veranstaltungstitel: 30th European Conference on Information Systems
Veranstaltungsort: Timisoara, Romania
Veranstaltungsdatum: 18.06.2022-24.06.2022
URL / URN: https://aisel.aisnet.org/ecis2022_rp/29/
Zugehörige Links:
Kurzbeschreibung (Abstract):

Artificial intelligence, specifically machine learning (ML), technologies are powerfully driving business model innovation in organizations against the backdrop of increasing digitalization. The resulting novel business models are profoundly shaped by ML, a technology that brings about unique opportunities and challenges. However, to date, little research examines what exactly constitutes these business models that use ML at their core and how they can be distinguished. Therefore, this study aims to contribute to an increased understanding of the anatomy of ML-driven business models in the business-to-business segment. To this end, we develop a taxonomy that allows researchers and practitioners to differentiate these ML-driven business models according to their characteristics along ten dimensions. Additionally, we derive archetypes of ML-driven business models through a cluster analysis based on the characteristics of 102 start-ups from the database Crunchbase. Our results are cross-industry, providing fertile soil for expansion through future investigations.

Fachbereich(e)/-gebiet(e): 01 Fachbereich Rechts- und Wirtschaftswissenschaften
16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW)
16 Fachbereich Maschinenbau > Institut für Produktionsmanagement und Werkzeugmaschinen (PTW) > Management industrieller Produktion
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Wirtschaftsinformatik
01 Fachbereich Rechts- und Wirtschaftswissenschaften > Betriebswirtschaftliche Fachgebiete > Fachgebiet Software Business & Information Management
Hinterlegungsdatum: 30 Jun 2022 10:14
Letzte Änderung: 07 Jun 2024 10:11
PPN:
Export:
Suche nach Titel in: TUfind oder in Google
Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen