TU Darmstadt / ULB / TUbiblio

A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework

Gutiérrez-Jorquera, Juan ; Kummer, Florian (2022)
A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework.
In: International Journal for Numerical Methods in Fluids, 2022, 94 (4)
doi: 10.26083/tuprints-00021545
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

We present a fully coupled solver based on the discontinuous Galerkin method for steady‐state diffusion flames using the low‐Mach approximation of the governing equations with a one‐step kinetic model. The nonlinear equation system is solved with a Newton–Dogleg method and initial estimates for flame calculations are obtained from a flame‐sheet model. Details on the spatial discretization and the nonlinear solver are presented. The method is tested with reactive and nonreactive benchmark cases. Convergence studies are presented, and we show that the expected convergence rates are obtained. The solver for the low‐Mach equations is used for calculating a differentially heated cavity configuration, which is validated against benchmark solutions. Additionally, a two‐dimensional counter diffusion flame is calculated, and the results are compared with the self‐similar one dimensional solution of said configuration.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Gutiérrez-Jorquera, Juan ; Kummer, Florian
Art des Eintrags: Zweitveröffentlichung
Titel: A fully coupled high‐order discontinuous Galerkin method for diffusion flames in a low‐Mach number framework
Sprache: Englisch
Publikationsjahr: 2022
Ort: Darmstadt
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: John Wiley & Sons
Titel der Zeitschrift, Zeitung oder Schriftenreihe: International Journal for Numerical Methods in Fluids
Jahrgang/Volume einer Zeitschrift: 94
(Heft-)Nummer: 4
DOI: 10.26083/tuprints-00021545
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21545
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

We present a fully coupled solver based on the discontinuous Galerkin method for steady‐state diffusion flames using the low‐Mach approximation of the governing equations with a one‐step kinetic model. The nonlinear equation system is solved with a Newton–Dogleg method and initial estimates for flame calculations are obtained from a flame‐sheet model. Details on the spatial discretization and the nonlinear solver are presented. The method is tested with reactive and nonreactive benchmark cases. Convergence studies are presented, and we show that the expected convergence rates are obtained. The solver for the low‐Mach equations is used for calculating a differentially heated cavity configuration, which is validated against benchmark solutions. Additionally, a two‐dimensional counter diffusion flame is calculated, and the results are compared with the self‐similar one dimensional solution of said configuration.

Freie Schlagworte: diffusion flames, discontinuous Galerkin, high‐order methods, low‐Mach equations, Newton method
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-215457
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Fachgebiet für Strömungsdynamik (fdy)
Hinterlegungsdatum: 24 Jun 2022 12:57
Letzte Änderung: 27 Jun 2024 08:40
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen