Leotta, Fabio (2022)
Piecewise Parabolic Interface Reconstruction from Volume Fractions on Unstructured Polyhedral Meshes.
Technische Universität Darmstadt
doi: 10.26083/tuprints-00021080
Masterarbeit, Erstveröffentlichung, Verlagsversion
Kurzbeschreibung (Abstract)
An interface & curvature reconstruction method on unstructured meshes is presented by generalizing the ideas and efforts expressed in a previous work (cf. Kromer et al. [4]) the author has contributed to. Herein, a novel piecewise linear interface (re-)construction method, henceforth referred to as PLIC, has been proposed, whose concept is extended to accommodate a piecewise parabolic interface (re-)construction method, abbreviated as PPIC. Analogously to PLIC, the overall strategy will be to fit a paraboloid to the volume fraction data in a least-squares sense. The resulting error sum is then read as a function that is parametrized by the paraboloids base point, orientation and curvature, which allows to apply the Reynolds transport theorem to retrieve derivative information for a Newton-type minimization scheme. As it was vital to PLIC, the optimization problem that amounts to PPIC will be complemented by suitable constraints to account for volume conservation and stability.
Typ des Eintrags: | Masterarbeit |
---|---|
Erschienen: | 2022 |
Autor(en): | Leotta, Fabio |
Art des Eintrags: | Erstveröffentlichung |
Titel: | Piecewise Parabolic Interface Reconstruction from Volume Fractions on Unstructured Polyhedral Meshes |
Sprache: | Englisch |
Referenten: | Bothe, Prof. Dr. Dieter ; Kromer, Dr. Johannes |
Publikationsjahr: | 2022 |
Ort: | Darmstadt |
Kollation: | III, 39 Seiten |
DOI: | 10.26083/tuprints-00021080 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21080 |
Kurzbeschreibung (Abstract): | An interface & curvature reconstruction method on unstructured meshes is presented by generalizing the ideas and efforts expressed in a previous work (cf. Kromer et al. [4]) the author has contributed to. Herein, a novel piecewise linear interface (re-)construction method, henceforth referred to as PLIC, has been proposed, whose concept is extended to accommodate a piecewise parabolic interface (re-)construction method, abbreviated as PPIC. Analogously to PLIC, the overall strategy will be to fit a paraboloid to the volume fraction data in a least-squares sense. The resulting error sum is then read as a function that is parametrized by the paraboloids base point, orientation and curvature, which allows to apply the Reynolds transport theorem to retrieve derivative information for a Newton-type minimization scheme. As it was vital to PLIC, the optimization problem that amounts to PPIC will be complemented by suitable constraints to account for volume conservation and stability. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-210800 |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 500 Naturwissenschaften und Mathematik > 510 Mathematik 500 Naturwissenschaften und Mathematik > 530 Physik 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 04 Fachbereich Mathematik 04 Fachbereich Mathematik > Numerik und wissenschaftliches Rechnen |
Hinterlegungsdatum: | 23 Jun 2022 12:03 |
Letzte Änderung: | 24 Jun 2022 11:10 |
PPN: | |
Referenten: | Bothe, Prof. Dr. Dieter ; Kromer, Dr. Johannes |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |