TU Darmstadt / ULB / TUbiblio

3D-printed PLA-bioglass scaffolds with controllable calcium release and MSC adhesion for bone tissue engineering

Schätzlein, Eva ; Kicker, Christoph ; Söhling, Nicolas ; Ritz, Ulrike ; Neijhoft, Jonas ; Henrich, Dirk ; Frank, Johannes ; Marzi, Ingo ; Blaeser, Andreas (2022)
3D-printed PLA-bioglass scaffolds with controllable calcium release and MSC adhesion for bone tissue engineering.
In: Polymers, 14 (12)
doi: 10.3390/polym14122389
Artikel, Bibliographie

Dies ist die neueste Version dieses Eintrags.

Kurzbeschreibung (Abstract)

Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200–2000 µm) with adaptable mechanical properties (83–135 MPa). Additionally, controllable calcium release kinetics (0–0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Schätzlein, Eva ; Kicker, Christoph ; Söhling, Nicolas ; Ritz, Ulrike ; Neijhoft, Jonas ; Henrich, Dirk ; Frank, Johannes ; Marzi, Ingo ; Blaeser, Andreas
Art des Eintrags: Bibliographie
Titel: 3D-printed PLA-bioglass scaffolds with controllable calcium release and MSC adhesion for bone tissue engineering
Sprache: Englisch
Publikationsjahr: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Polymers
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 12
DOI: 10.3390/polym14122389
URL / URN: https://www.mdpi.com/2073-4360/14/12/2389
Zugehörige Links:
Kurzbeschreibung (Abstract):

Large bone defects are commonly treated by replacement with auto- and allografts, which have substantial drawbacks including limited supply, donor site morbidity, and possible tissue rejection. This study aimed to improve bone defect treatment using a custom-made filament for tissue engineering scaffolds. The filament consists of biodegradable polylactide acid (PLA) and a varying amount (up to 20) of osteoconductive S53P4 bioglass. By employing an innovative, additive manufacturing technique, scaffolds with optimized physico-mechanical and biological properties were produced. The scaffolds feature adjustable macro- and microporosity (200–2000 µm) with adaptable mechanical properties (83–135 MPa). Additionally, controllable calcium release kinetics (0–0.25 nMol/µL after 24 h), tunable mesenchymal stem cell (MSC) adhesion potential (after 24 h by a factor of 14), and proliferation (after 168 h by a factor of 18) were attained. Microgrooves resulting from the 3D-printing process on the surface act as a nucleus for cell aggregation, thus being a potential cell niche for spheroid formation or possible cell guidance. The scaffold design with its adjustable biomechanics and the bioglass with its antimicrobial properties are of particular importance for the preclinical translation of the results. This study comprehensibly demonstrates the potential of a 3D-printed bioglass composite scaffold for the treatment of critical-sized bone defects.

Fachbereich(e)/-gebiet(e): 16 Fachbereich Maschinenbau
16 Fachbereich Maschinenbau > Institut für Druckmaschinen und Druckverfahren (IDD)
Hinterlegungsdatum: 23 Jun 2022 05:20
Letzte Änderung: 29 Aug 2024 09:46
PPN: 495878421
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen