Al-Baradoni, Nassr ; Groche, Peter (2022)
Identification of the sensory properties of image-based multi-axis force/torque sensors.
Sensoren und Messsysteme 2022. Nürnberg (10.05.2022-11.05.2022)
Konferenzveröffentlichung, Bibliographie
Kurzbeschreibung (Abstract)
A novel image-based sensor concept for the detection of multi-axial forces/torques has been introduced by the authors in previous publications. The sensor concept is capable of detecting multiaxial loads in a single image and uniquely identifying all load components. In the present work, the sensory properties of the image-based multi-axis force-torque sensor are investigated in more detail. On the one hand, it compares the measurement resolution and measurement ranges as essential properties of a force/torque sensor with dominate strain gauge-based ones. Moreover, the measuring dynamics of the sensor are addressed and Deep Learning approaches are investigated to enhance the computationally intensive analysis process of the image data of such sensors.
Typ des Eintrags: | Konferenzveröffentlichung |
---|---|
Erschienen: | 2022 |
Autor(en): | Al-Baradoni, Nassr ; Groche, Peter |
Art des Eintrags: | Bibliographie |
Titel: | Identification of the sensory properties of image-based multi-axis force/torque sensors |
Sprache: | Englisch |
Publikationsjahr: | Mai 2022 |
Ort: | Berlin, Offenbach |
Verlag: | VDE Verlag GmbH |
Buchtitel: | Sensoren und Messsysteme : Beiträge der 21. ITG/GMA-Fachtagung 10. – 11. Mai 2022 in Nürnberg |
Veranstaltungstitel: | Sensoren und Messsysteme 2022 |
Veranstaltungsort: | Nürnberg |
Veranstaltungsdatum: | 10.05.2022-11.05.2022 |
Zugehörige Links: | |
Kurzbeschreibung (Abstract): | A novel image-based sensor concept for the detection of multi-axial forces/torques has been introduced by the authors in previous publications. The sensor concept is capable of detecting multiaxial loads in a single image and uniquely identifying all load components. In the present work, the sensory properties of the image-based multi-axis force-torque sensor are investigated in more detail. On the one hand, it compares the measurement resolution and measurement ranges as essential properties of a force/torque sensor with dominate strain gauge-based ones. Moreover, the measuring dynamics of the sensor are addressed and Deep Learning approaches are investigated to enhance the computationally intensive analysis process of the image data of such sensors. |
Fachbereich(e)/-gebiet(e): | 16 Fachbereich Maschinenbau 16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU) 16 Fachbereich Maschinenbau > Institut für Produktionstechnik und Umformmaschinen (PtU) > Forschungsabteilung Prozessketten und Anlagen |
Hinterlegungsdatum: | 26 Sep 2022 06:04 |
Letzte Änderung: | 05 Sep 2023 09:30 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |