TU Darmstadt / ULB / TUbiblio

The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis

Herceg, Sina ; Kaaya, Ismail ; Ascencio-Vásquez, Julián ; Fischer, Marie ; Weiß, Karl-Anders ; Schebek, Liselotte (2022)
The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis.
In: Sustainability, 2022, 14 (10)
doi: 10.26083/tuprints-00021483
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

The environmental footprint of photovoltaic electricity is usually assessed using nominated power or life cycle energy output. If performance degradation is considered, a linear reduction in lifetime energy output is assumed. However, research has shown that the decrease in energy output over time does not necessarily follow a linear degradation pattern but can vary at different points in the module's lifetime. Further, photovoltaic modules follow different degradation patterns in different climate zones. In this study, we address the influence of different degradation aspects on the greenhouse gas (GHG) emissions of PV electricity. Firstly, we apply different non-linear degradation scenarios to evaluate the GHG emissions and show that the differences in GHG emissions in comparison to a linear degradation can be up to 6.0%. Secondly, we use the ERA5 dataset generated by the ECMWF to calculate location-dependent degradation rates and apply them to estimate the location-specific GHG emissions. Due to the reduction in lifetime energy output, there is a direct correlation between the calculated degradation rate and GHG emissions. Thirdly, we assess the impact of climate change on degradation rates and on the respective GHG emissions of photovoltaic electricity using different climate change scenarios. In a best-case scenario, the GHG emissions are estimated to increase by around 5% until the year 2100 and by around 105% by 2100 for a worst-case scenario.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Herceg, Sina ; Kaaya, Ismail ; Ascencio-Vásquez, Julián ; Fischer, Marie ; Weiß, Karl-Anders ; Schebek, Liselotte
Art des Eintrags: Zweitveröffentlichung
Titel: The Influence of Different Degradation Characteristics on the Greenhouse Gas Emissions of Silicon Photovoltaics: A Threefold Analysis
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sustainability
Jahrgang/Volume einer Zeitschrift: 14
(Heft-)Nummer: 10
Kollation: 15 Seiten
DOI: 10.26083/tuprints-00021483
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21483
Zugehörige Links:
Herkunft: Zweitveröffentlichung DeepGreen
Kurzbeschreibung (Abstract):

The environmental footprint of photovoltaic electricity is usually assessed using nominated power or life cycle energy output. If performance degradation is considered, a linear reduction in lifetime energy output is assumed. However, research has shown that the decrease in energy output over time does not necessarily follow a linear degradation pattern but can vary at different points in the module's lifetime. Further, photovoltaic modules follow different degradation patterns in different climate zones. In this study, we address the influence of different degradation aspects on the greenhouse gas (GHG) emissions of PV electricity. Firstly, we apply different non-linear degradation scenarios to evaluate the GHG emissions and show that the differences in GHG emissions in comparison to a linear degradation can be up to 6.0%. Secondly, we use the ERA5 dataset generated by the ECMWF to calculate location-dependent degradation rates and apply them to estimate the location-specific GHG emissions. Due to the reduction in lifetime energy output, there is a direct correlation between the calculated degradation rate and GHG emissions. Thirdly, we assess the impact of climate change on degradation rates and on the respective GHG emissions of photovoltaic electricity using different climate change scenarios. In a best-case scenario, the GHG emissions are estimated to increase by around 5% until the year 2100 and by around 105% by 2100 for a worst-case scenario.

Freie Schlagworte: LCA, GHG, photovoltaic, degradation, ERA5, climate change
Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-214834
Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 13 Fachbereich Bau- und Umweltingenieurwissenschaften
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung
13 Fachbereich Bau- und Umweltingenieurwissenschaften > Institut IWAR - Wasser- und Abfalltechnik, Umwelt- und Raumplanung > Fachgebiet Stoffstrommanagement und Ressourcenwirtschaft
Hinterlegungsdatum: 10 Jun 2022 11:06
Letzte Änderung: 13 Jun 2022 06:08
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen