Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L. (2022)
A machine-learned interatomic potential for silica and its relation to empirical models.
In: npj Computational Materials, 2022, 8
doi: 10.26083/tuprints-00021424
Artikel, Zweitveröffentlichung, Verlagsversion
Es ist eine neuere Version dieses Eintrags verfügbar. |
Kurzbeschreibung (Abstract)
Silica (SiO₂) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of the crystalline phases, and we compare its performance (and performance–cost trade-off) with that of multiple empirically fitted interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in the field.
Typ des Eintrags: | Artikel |
---|---|
Erschienen: | 2022 |
Autor(en): | Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L. |
Art des Eintrags: | Zweitveröffentlichung |
Titel: | A machine-learned interatomic potential for silica and its relation to empirical models |
Sprache: | Englisch |
Publikationsjahr: | 2022 |
Publikationsdatum der Erstveröffentlichung: | 2022 |
Verlag: | Springer |
Titel der Zeitschrift, Zeitung oder Schriftenreihe: | npj Computational Materials |
Jahrgang/Volume einer Zeitschrift: | 8 |
Kollation: | 12 Seiten |
DOI: | 10.26083/tuprints-00021424 |
URL / URN: | https://tuprints.ulb.tu-darmstadt.de/21424 |
Zugehörige Links: | |
Herkunft: | Zweitveröffentlichung aus gefördertem Golden Open Access |
Kurzbeschreibung (Abstract): | Silica (SiO₂) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of the crystalline phases, and we compare its performance (and performance–cost trade-off) with that of multiple empirically fitted interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in the field. |
Status: | Verlagsversion |
URN: | urn:nbn:de:tuda-tuprints-214241 |
Zusätzliche Informationen: | Keywords: Atomistic models, ceramics |
Sachgruppe der Dewey Dezimalklassifikatin (DDC): | 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau |
Fachbereich(e)/-gebiet(e): | 11 Fachbereich Material- und Geowissenschaften 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft 11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung |
Hinterlegungsdatum: | 07 Jun 2022 12:12 |
Letzte Änderung: | 08 Jun 2022 05:53 |
PPN: | |
Export: | |
Suche nach Titel in: | TUfind oder in Google |
Verfügbare Versionen dieses Eintrags
- A machine-learned interatomic potential for silica and its relation to empirical models. (deposited 07 Jun 2022 12:12) [Gegenwärtig angezeigt]
Frage zum Eintrag |
Optionen (nur für Redakteure)
Redaktionelle Details anzeigen |