TU Darmstadt / ULB / TUbiblio

A machine-learned interatomic potential for silica and its relation to empirical models

Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L. (2022)
A machine-learned interatomic potential for silica and its relation to empirical models.
In: npj Computational Materials, 2022, 8
doi: 10.26083/tuprints-00021424
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Silica (SiO₂) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of the crystalline phases, and we compare its performance (and performance–cost trade-off) with that of multiple empirically fitted interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in the field.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Erhard, Linus C. ; Rohrer, Jochen ; Albe, Karsten ; Deringer, Volker L.
Art des Eintrags: Zweitveröffentlichung
Titel: A machine-learned interatomic potential for silica and its relation to empirical models
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: Springer
Titel der Zeitschrift, Zeitung oder Schriftenreihe: npj Computational Materials
Jahrgang/Volume einer Zeitschrift: 8
Kollation: 12 Seiten
DOI: 10.26083/tuprints-00021424
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21424
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Silica (SiO₂) is an abundant material with a wide range of applications. Despite much progress, the atomistic modelling of the different forms of silica has remained a challenge. Here we show that by combining density-functional theory at the SCAN functional level with machine-learning-based interatomic potential fitting, a range of condensed phases of silica can be accurately described. We present a Gaussian approximation potential model that achieves high accuracy for the thermodynamic properties of the crystalline phases, and we compare its performance (and performance–cost trade-off) with that of multiple empirically fitted interatomic potentials for silica. We also include amorphous phases, assessing the ability of the potentials to describe structures of melt-quenched glassy silica, their energetic stability, and the high-pressure structural transition to a mainly sixfold-coordinated phase. We suggest that rather than standing on their own, machine-learned potentials for silica may be used in conjunction with suitable empirical models, each having a distinct role and complementing the other, by combining the advantages of the long simulation times afforded by empirical potentials and the near-quantum-mechanical accuracy of machine-learned potentials. This way, our work is expected to advance atomistic simulations of this key material and to benefit further computational studies in the field.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-214241
Zusätzliche Informationen:

Keywords: Atomistic models, ceramics

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 600 Technik, Medizin, angewandte Wissenschaften > 620 Ingenieurwissenschaften und Maschinenbau
Fachbereich(e)/-gebiet(e): 11 Fachbereich Material- und Geowissenschaften
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft
11 Fachbereich Material- und Geowissenschaften > Materialwissenschaft > Fachgebiet Materialmodellierung
Hinterlegungsdatum: 07 Jun 2022 12:12
Letzte Änderung: 08 Jun 2022 05:53
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen