TU Darmstadt / ULB / TUbiblio

Improving Wearable-Based Activity Recognition Using Image Representations

Sanchez Guinea, Alejandro ; Sarabchian, Mehran ; Mühlhäuser, Max (2022)
Improving Wearable-Based Activity Recognition Using Image Representations.
In: Sensors, 2022, 22 (5)
doi: 10.26083/tuprints-00021490
Artikel, Zweitveröffentlichung, Verlagsversion

WarnungEs ist eine neuere Version dieses Eintrags verfügbar.

Kurzbeschreibung (Abstract)

Activity recognition based on inertial sensors is an essential task in mobile and ubiquitous computing. To date, the best performing approaches in this task are based on deep learning models. Although the performance of the approaches has been increasingly improving, a number of issues still remain. Specifically, in this paper we focus on the issue of the dependence of today’s state-of-the-art approaches to complex ad hoc deep learning convolutional neural networks (CNNs), recurrent neural networks (RNNs), or a combination of both, which require specialized knowledge and considerable effort for their construction and optimal tuning. To address this issue, in this paper we propose an approach that automatically transforms the inertial sensors time-series data into images that represent in pixel form patterns found over time, allowing even a simple CNN to outperform complex ad hoc deep learning models that combine RNNs and CNNs for activity recognition. We conducted an extensive evaluation considering seven benchmark datasets that are among the most relevant in activity recognition. Our results demonstrate that our approach is able to outperform the state of the art in all cases, based on image representations that are generated through a process that is easy to implement, modify, and extend further, without the need of developing complex deep learning models.

Typ des Eintrags: Artikel
Erschienen: 2022
Autor(en): Sanchez Guinea, Alejandro ; Sarabchian, Mehran ; Mühlhäuser, Max
Art des Eintrags: Zweitveröffentlichung
Titel: Improving Wearable-Based Activity Recognition Using Image Representations
Sprache: Englisch
Publikationsjahr: 2022
Publikationsdatum der Erstveröffentlichung: 2022
Verlag: MDPI
Titel der Zeitschrift, Zeitung oder Schriftenreihe: Sensors
Jahrgang/Volume einer Zeitschrift: 22
(Heft-)Nummer: 5
Kollation: 21 Seiten
DOI: 10.26083/tuprints-00021490
URL / URN: https://tuprints.ulb.tu-darmstadt.de/21490
Zugehörige Links:
Herkunft: Zweitveröffentlichung aus gefördertem Golden Open Access
Kurzbeschreibung (Abstract):

Activity recognition based on inertial sensors is an essential task in mobile and ubiquitous computing. To date, the best performing approaches in this task are based on deep learning models. Although the performance of the approaches has been increasingly improving, a number of issues still remain. Specifically, in this paper we focus on the issue of the dependence of today’s state-of-the-art approaches to complex ad hoc deep learning convolutional neural networks (CNNs), recurrent neural networks (RNNs), or a combination of both, which require specialized knowledge and considerable effort for their construction and optimal tuning. To address this issue, in this paper we propose an approach that automatically transforms the inertial sensors time-series data into images that represent in pixel form patterns found over time, allowing even a simple CNN to outperform complex ad hoc deep learning models that combine RNNs and CNNs for activity recognition. We conducted an extensive evaluation considering seven benchmark datasets that are among the most relevant in activity recognition. Our results demonstrate that our approach is able to outperform the state of the art in all cases, based on image representations that are generated through a process that is easy to implement, modify, and extend further, without the need of developing complex deep learning models.

Status: Verlagsversion
URN: urn:nbn:de:tuda-tuprints-214908
Zusätzliche Informationen:

This article belongs to the Special Issue Sensors-Based Human Action and Emotion Recognition (s. verwandtes Werk)

Keywords: human activity recognition; image representation; CNNs; IMU; inertial sensors; wearable sensors

Sachgruppe der Dewey Dezimalklassifikatin (DDC): 000 Allgemeines, Informatik, Informationswissenschaft > 004 Informatik
Fachbereich(e)/-gebiet(e): 20 Fachbereich Informatik
20 Fachbereich Informatik > Telekooperation
Hinterlegungsdatum: 07 Jun 2022 12:17
Letzte Änderung: 09 Jun 2022 09:29
PPN:
Export:
Suche nach Titel in: TUfind oder in Google

Verfügbare Versionen dieses Eintrags

Frage zum Eintrag Frage zum Eintrag

Optionen (nur für Redakteure)
Redaktionelle Details anzeigen Redaktionelle Details anzeigen